

Campagna indagini geofisiche - anno 2023

Microtremori in sismica passiva – HVSR

Acquisizioni indagini ISPRA - anno 2023

Pozzi per acqua con stratigrafia Pozzo per ricerca di idrocarburi Sismica a riflessione

Campagna indagini geognostiche - anno 2007

Sondaggi a carotaggio continuo Prove penetrometriche tipo CPT e DPSH

Campagna indagini geofisiche - anno 2007 Indagini in sismica attiva - FTAN

Indagini in foro – Down Hole

Indagine in sismica passiva di Cross Correlazione

Campagna indagini geofisiche - **anno 2023** Microtremori in sismica passiva – HVSR

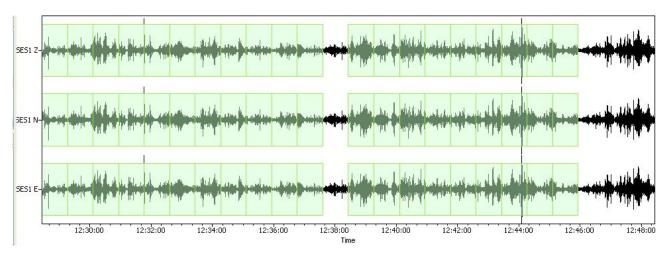
PUNTO DI MISURA: **SES1**

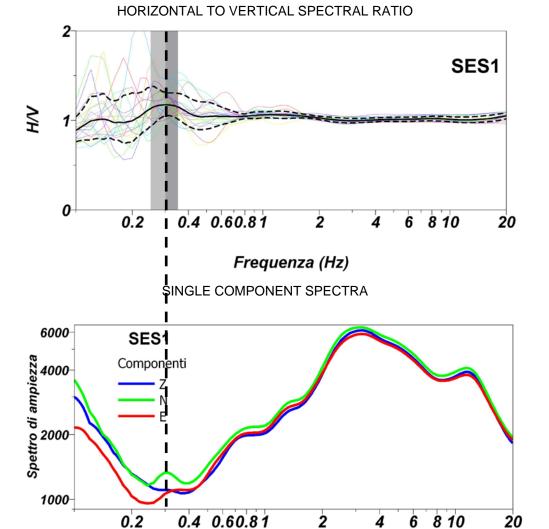
Località: SP per Lauro S. Castrese

Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte Full scale [mV]: n.a.

Latitude: 41.242914°N Longitude: 13.820240°E





Sampling rate: 128 Hz Window size: 50 s

Smoothing type: Konno and Ohmachi

Smoothing: 15 (b value)

Frequenza (Hz)

f_0 H/V at 0.30 ± 0.05 Hz

[AII 3	should be fulfilled]		
f ₀ > 10 / L _w	0.30 > 0.50		NO
n _c (f ₀) > 200	300 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	verified	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
	or a clear H/V peak		
[At least 5 ou	or a clear H/V peak ut of 6 should be fulfilled]		
[At least 5 or Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	•		NO
[At least 5 or Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	ut of 6 should be fulfilled]		NO
[At least 5 or Exists f ⁻ in [f ₀ /4, f ₀] $A_{H/V}(f^{-}) < A_0 / 2$	•		NO
[At least 5 or Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	ut of 6 should be fulfilled]		_
[At least 5 or Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Exists f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	ut of 6 should be fulfilled] 1.45 > 2	OK	NO NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
()	should be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

PUNTO DI MISURA: **SES2**

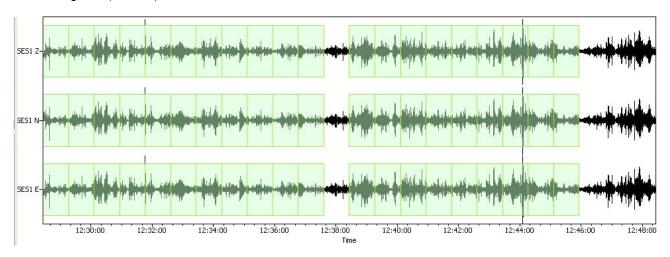
Località: SS 430

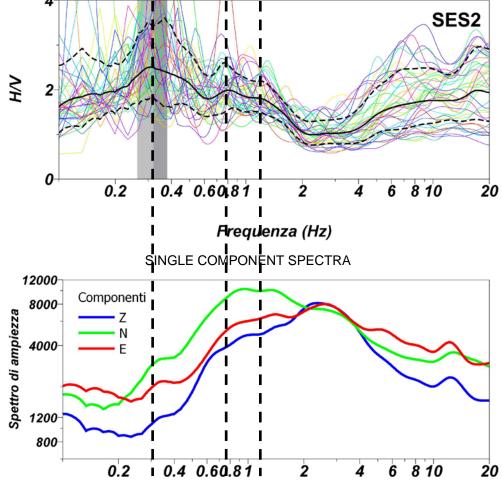
Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte

Full scale [mV]: n.a.
Start recording: 12/05/2023 12:28:26 End recording: 12/05/2023 12:48:26
Latitude: 41.240928°N

Longitude: 13.841783°E




Sampling rate: 128 Hz Window size: 30 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

Frequenza (Hz)

f_0 H/V at 0.32 ± 0.06 Hz

f_1 H/V at 0.82 ± 0.04 Hz – f_2 H/V at 1.23 ± 0.12 Hz -

Criteria for a reliable H/V curve [All 3 should be fulfilled] $f_0 > 10 / L_w$ 0.32 > 0.31OK $n_c(f_0) > 200$ 307 > 200 OK $\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ verificato 52 volte OK $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$ Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled] Exists f in $[f_0/4, f_0] | A_{H/V}(f) < A_0 / 2$ NO NO Exists f + in $[f_0, 4f_0] | A_{H/V}(f +) < A_0 / 2$ 2.50 > 2 OK $A_0 > 2$ |0.187| < 0.05 $f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ NO 0.06 < 0.064 OK $\sigma_f < \epsilon(f_0)$ 1.28 < 2.5 OK $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/∨} (f)	H/V curve amplitude at frequency f
f = `	frequency between f ₀ /4 and f ₀ for which A _{H/V} (f ⁻) < A ₀ /2
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

PUNTO DI MISURA: **SES3**

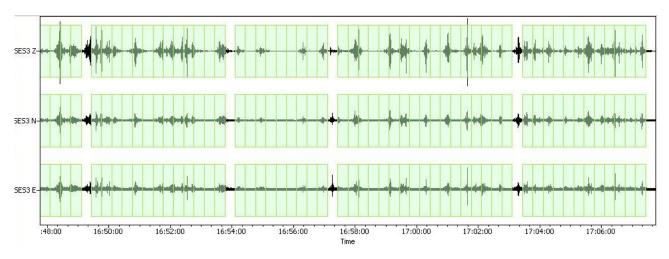
Località: ISISS Taddeo da Sessa

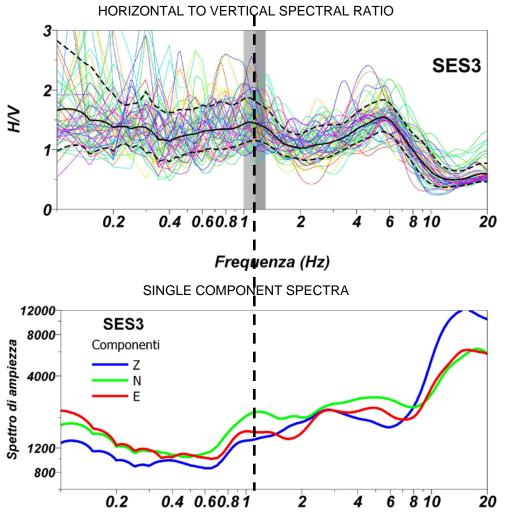
MAE ST6 + 3D geophone 2Hz EG-2-II Instrument:

Data format: 16 byte

Full scale [mV]: n.a.
Start recording: 13/05/2023 16:47:46 End recording: 13/05/2023 17:07:46
Latitude: 41.228585°N

Longitude: 13.919966°E





Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

Frequenza (Hz)

f₀ H/V at 1.15 ± 0.16 Hz

f₁ H/V at 5.43 ± 0.67 Hz

Criteria for a reliable H/V curve [All 3 should be fulfilled]					
$f_0 > 10 / L_w$	1.15 > 0.21	OK			
$n_c(f_0) > 200$	1104 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	verificato 52 volte	OK			
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$					
[At least 5	for a clear H/V peak out of 6 should be fulfilled]	T	NO.		
Exists f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$			NO		
Exists f + in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$			NO		
A ₀ > 2	1.40 > 2		NO		
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.139 < 0.05		NO		
$\sigma_{\rm f} < \epsilon(f_0)$	0.166 < 0.115		NO		
$\sigma_A(f_0) < \theta(f_0)$	1.25 < 1.78	OK			

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f ₀	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency fo
A _{H/} √(f)	H/V curve amplitude at frequency f
f - `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

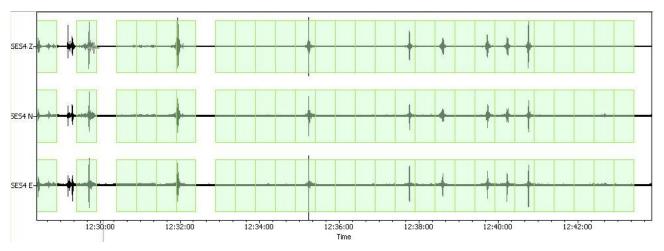
Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

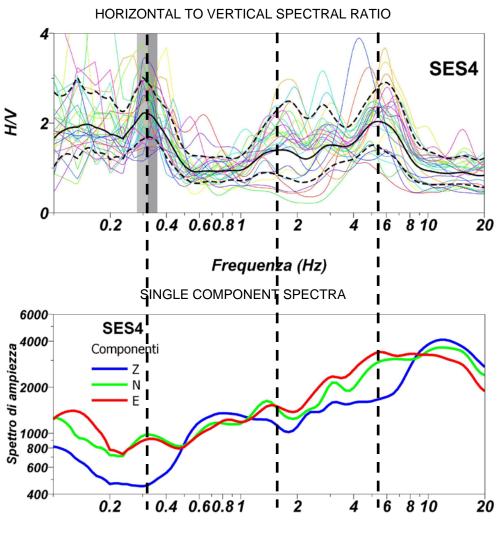
PUNTO DI MISURA: **SES4** Località: **Via Saglitola**

Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte Full scale [mV]: n.a.

Latitude: 41.273952°N Longitude: 13.878315°E





Sampling rate: 128 Hz Window size: 30 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

Frequenza (Hz)

 $\sigma_A(f_0) < \theta(f_0)$

f_0 H/V at 0.32 ± 0.04 Hz

f_1 H/V at 1.68 ± 0.22 Hz – f_2 H/V at 5.49 ± 0.67 Hz -

Criteria for a reliable H/V curve [All 3 should be fulfilled] $f_0 > 10 / L_w$ 0.32 > 0.37NO $n_c(f_0) > 200$ 259> 200 OK $\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ verificato 55 volte OK $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$ Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled] Exists f in $[f_0/4, f_0] | A_{H/V}(f) < A_0 / 2$ NO 0.49 Hz Exists f + in $[f_0, 4f_0] | A_{H/V}(f +) < A_0 / 2$ SI 2.2 > 2 $A_0 > 2$ |0.125| < 0.05 $f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ NO 0.04 < 0.064 OK $\sigma_f < \epsilon(f_0)$

1.30 < 2.5

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/V} (f)	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
()	should be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

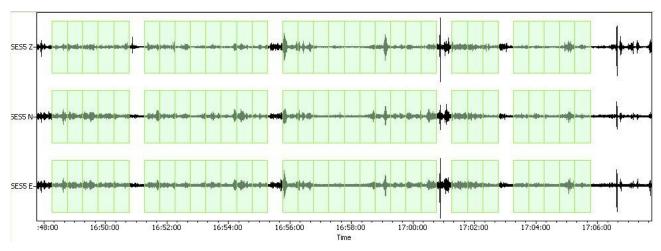
Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

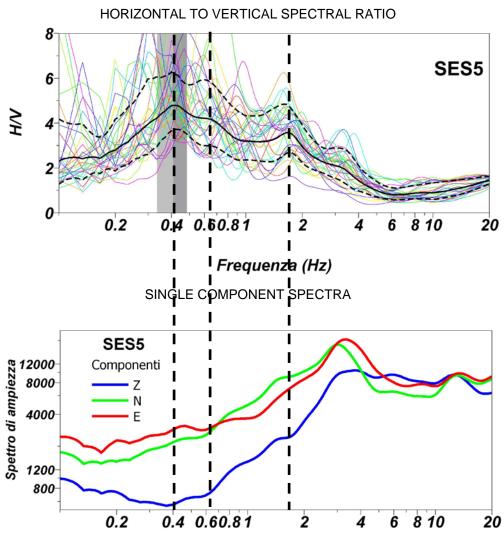
PUNTO DI MISURA: **SES5** Località: **Traversa della SS 430**

Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte Full scale [mV]: n.a.

Latitude: 41.282270°N Longitude: 13.869006°E





Sampling rate: 128 Hz Window size: 30 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

Frequenza (Hz)

f_0 H/V at 0.43 ± 0.06 Hz f_1 H/V at 0.65 ± 0.08 Hz – f_2 H/V at 1.68 ± 0.15 Hz -

Criteria for a reliable H/V curve [All 3 should be fulfilled] $f_0 > 10 / L_w$ 0.43 > 0.42OK $n_c(f_0) > 200$ 413 > 200 OK $\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ verified OK $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$ Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled] Exists f in $[f_0/4, f_0] | A_{H/V}(f) < A_0 / 2$ NO Exists f^+ in $[f_0, 4f_0] | A_{H/V}(f^+) < A_0 / 2$ SI 1.45 > 2 $A_0 > 2$ |0.139| < 0.05 $f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ NO 0.06 < 0.086 OK $\sigma_f < \epsilon(f_0)$ 1.28 < 2.5 OK $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/∨} (f)	H/V curve amplitude at frequency f
f - ` `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-1}) < A_0/2$
f +	frequency between fo and 4fo for which A _{H/V} (f +) < A ₀ /2
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
()	should be multiplied or divided
σlogH/√(f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$						
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0						
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20	

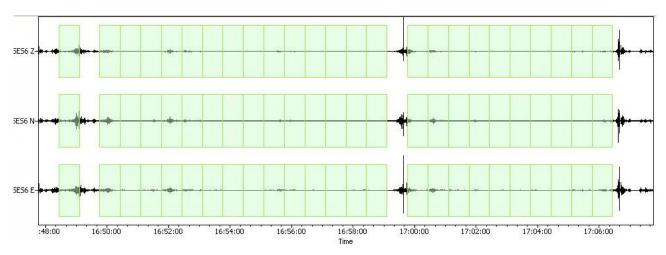
PUNTO DI MISURA: **SES6**

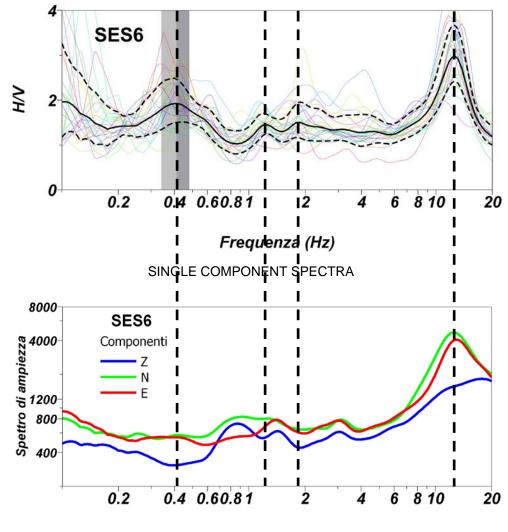
Località: Valogno

Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte Full scale [mV]: n.a.

Latitude: 41.298731°N Longitude: 13.914827°E




Sampling rate: 128 Hz Window size: 40 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

Frequenza (Hz)

f_0 H/V at 0.41 ± 0.08 Hz

f_1 H/V at 1.22 \pm 0.08 Hz – f_2 H/V at 1.82 \pm 0.13 Hz – f_3 H/V at 12.50 \pm 0.69 Hz

Criteria for a reliable H/V curve [All 3 should be fulfilled] $f_0 > 10 / L_w$ 0.41 > 0.40OK $n_c(f_0) > 200$ 410 > 200 OK $\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ verificato 53 volte OK $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$ Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled] Exists f in $[f_0/4, f_0] | A_{H/V}(f) < A_0 / 2$ Exists f^+ in $[f_0, 4f_0] | A_{H/V}(f^+) < A_0 / 2$ 1.92 > 2 $A_0 > 2$ NO $f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ |0.195| < 0.05NO 0.08 < 0.082 OK $\sigma_f < \epsilon(f_0)$ 1.28 < 2.5 OK $\sigma_A(f_0) < \theta(f_0)$

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/∨} (f)	H/V curve amplitude at frequency f
f = `	frequency between f ₀ /4 and f ₀ for which A _{H/V} (f ⁻) < A ₀ /2
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

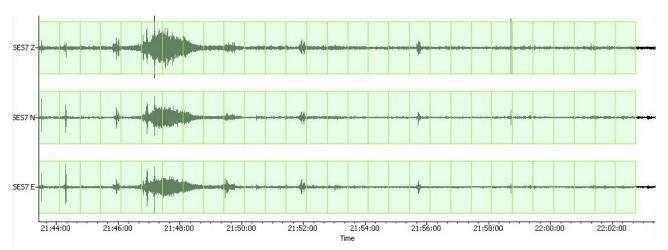
Threshold values for σ_f and $\sigma_A(f_0)$							
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
ε(f ₀) [Hz]	0.15 f ₀	0.10 f ₀	0.05 f ₀				
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

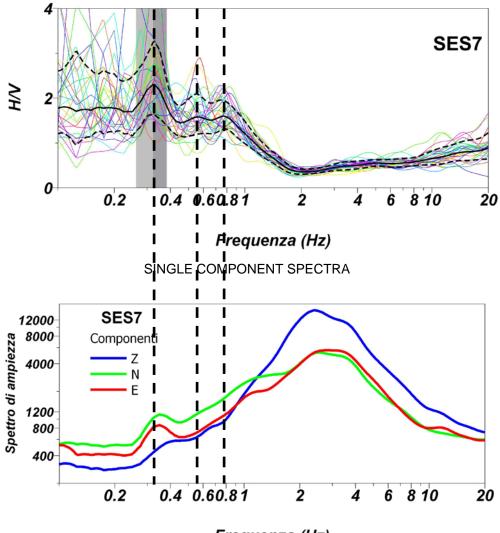
PUNTO DI MISURA: **SES7** Località: **SP 272 – Baia Domizia**

Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte Full scale [mV]: n.a.

Latitude: 41.207405°N Longitude: 13.791670°E




Sampling rate: 128 Hz Window size: 40 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

Frequenza (Hz)

 $\sigma_A(f_0) < \theta(f_0)$

f₀ H/V at 0.32 ± 0.03 Hz

f_1 H/V at 0.57 ± 0.04 Hz – f_2 H/V at 0.80 ± 0.04 Hz

Criteria for a reliable H/V curve [All 3 should be fulfilled] $f_0 > 10 / L_w$ 0.32 > 0.38NO $n_c(f_0) > 200$ 333 > 200 OK $\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ verificato 78 volte OK $\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$ Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled] Exists f in $[f_0/4, f_0] | A_{H/V}(f) < A_0 / 2$ NO 1.04 Hz Exists f + in $[f_0, 4f_0] | A_{H/V}(f +) < A_0 / 2$ OK 2.30 > 2 $A_0 > 2$ **OK** |0.094| < 0.05 $f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$ NO 0.03 < 0.064 OK $\sigma_f < \epsilon(f_0)$

1.41 < 2.5

OK

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \varepsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/∨} (f)	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

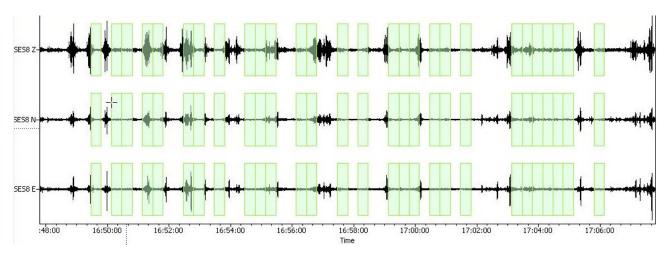
Threshold values for σ_f and $\sigma_A(f_0)$							
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
ε(f ₀) [Hz]	0.15 f ₀	0.10 f ₀	0.05 f ₀				
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

PUNTO DI MISURA: SES8

Località: **Via XXI Luglio** Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte Full scale [mV]: n.a.

Longitude: 13.932359°E



Sampling rate: 128 Hz Window size: 20 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

f₀ H/V at 0.43 ± 0.06 Hz

f_1 H/V at 2.86 ± 0.33 Hz – f_2 H/V at 5.41 ± 0.30 Hz

	or a reliable H/V curve 3 should be fulfilled]		
f ₀ > 10 / L _w	0.80 > 0.40	OK	
n _c (f ₀) > 200	400 > 200	OK	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	verificato 52 volte	OK	
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$			
[At least 5	for a clear H/V peak out of 6 should be fulfilled]		
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$		1	
			NO
Exists f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) < A_0 / 2$			NO NO
	1.90 > 2		_
Exists f + in [f ₀ , 4f ₀] $A_{H/V}(f +) < A_0 / 2$	1.90 > 2 0.125 < 0.05		NO
Exists f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$		OK	NO NO

L _w	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/∨} (f)	H/V curve amplitude at frequency f
f = `	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
()	should be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$							
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
$\epsilon(f_0)$ [Hz] 0.25 f_0 0.2 f_0 0.15 f_0 0.10 f_0							
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

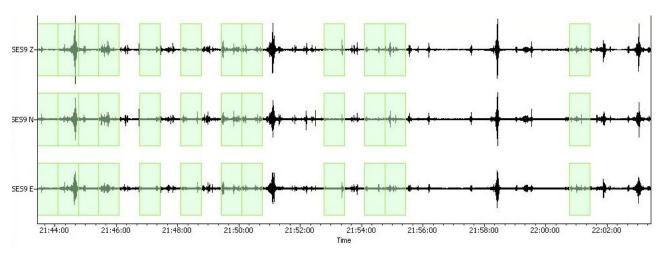
PUNTO DI MISURA: SES9

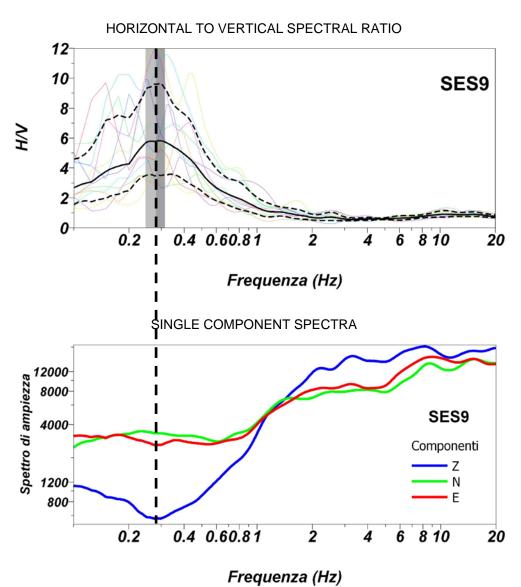
Località: Via Scalo Ferroviario - SP125

Instrument: MAE ST6 + 3D geophone 2Hz EG-2-II

Data format: 16 byte Full scale [mV]: n.a.

Latitude: 41.187759°N Longitude: 13.889206°E





Sampling rate: 128 Hz Window size: 40 s

Smoothing type: Konno and Ohmachi

Smoothing: 20 (b value)

f_0 H/V at 0.28 ± 0.03 Hz

	or a reliable H/V curve 3 should be fulfilled]		
f ₀ > 10 / L _w	0.28 > 0.83		NO
n _c (f ₀) > 200	400 > 200		NO
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$	verificato 52 volte	OK	
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$			
	for a clear H/V peak out of 6 should be fulfilled]		
		OK	
[At least 5	out of 6 should be fulfilled]	OK OK	
[At least 5] Exists f ⁻ in $[f_0/4, f_0] \mid A_{H/V}(f^-) < A_0 / 2$	out of 6 should be fulfilled] 0.10 Hz		
[At least 5] Exists f ⁻ in $[f_0/4, f_0] \mid A_{H/V}(f^-) < A_0 / 2$ Exists f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	out of 6 should be fulfilled] 0.10 Hz 0.61 Hz	OK	NO
[At least 5] Exists f ⁻ in $[f_0/4, f_0] \mid A_{H/V}(f^-) < A_0 / 2$ Exists f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$ $A_0 > 2$	0.10 Hz 0.61 Hz 5.40 > 2	OK	NO

L _w	window length
n_w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
f_0	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
A_0	H/V peak amplitude at frequency f ₀
A _{H/∨} (f)	H/V curve amplitude at frequency f
f-`	frequency between f ₀ /4 and f ₀ for which A _{H/V} (f ⁻) < A ₀ /2
f+	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
$\sigma_A(f)$	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve
	should be multiplied or divided
σ _{logH/V} (f)	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$							
Freq. range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
ε(f ₀) [Hz]	0.10 f ₀	0.05 f ₀					
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

Acquisizioni indagini ISPRA - **anno 2023**Pozzi per acqua con stratigrafia

Pozzo per ricerca di idrocarburi

Sismica a riflessione

Istituto Superiore per la Protezione e la Ricerca **Ambientale**

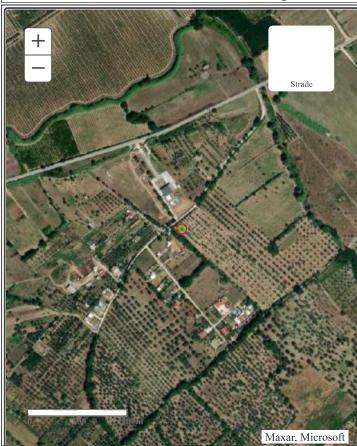
Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 17001 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA

Profondità (m): 57,00 Quota pc slm (m): ND Anno realizzazione: 2004 Numero diametri: 1 Presenza acqua: SI Portata massima (l/s): ND


Portata esercizio (l/s): ND

Numero falde: 1 Numero filtri: 0 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 6

Longitudine WGS84 (dd): 13,885097 **Latitudine WGS84 (dd):** 41,178500 **Longitudine WGS84 (dms):** 13° 53′ 06.35″ E **Latitudine WGS84 (dms):** 41° 10′ 42.60″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	57,00	57,00	250

FALDE ACQUIFERE

Progr		Da profondità (m)		A profondità (m)	Lunghezza (m)
1	53,00		53,00		0,00

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
gen/2004	16,00	35,00	19,00	3,000

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
$\ 1$	0,00	1,70	1,70		CINERITE ARGILLIFICATA FRAMMISTA A DETRITO DI FALDA
2	1,70	12,00	10,30		ARGILLA CON CIOTTOLI CALCAREI

3	12,00	34,50	22,50	TUFI CINERITICI
4	34,50	50,00	15,50	LAPILLO
5	50,00	51,00	1,00	ARGILLA
6	51,00	57,00	6,00	SABBIA COLOR OCRA CON ACQUA

ISPRA - Copyright 2018

Istituto Superiore per la Protezione e la Ricerca **Ambientale**

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

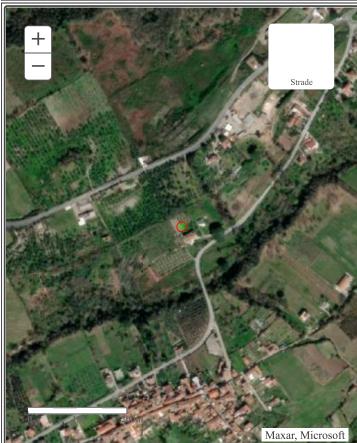
Dati generali

Codice: 17002

Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 140,00 Quota pc slm (m): 165,00 Anno realizzazione: 2006 Numero diametri: 2 Presenza acqua: SI

Portata massima (l/s): 2,000 Portata esercizio (l/s): 1,500


Numero falde: 1 Numero filtri: 0 Numero piezometrie: 2 Stratigrafia: SI Certificazione(*): SI Numero strati: 4

Longitudine WGS84 (dd): 13,931614 **Latitudine WGS84 (dd):** 41,219972

Longitudine WGS84 (dms): 13° 55′ 53.81″ E **Latitudine WGS84 (dms):** 41° 13′ 11.91″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	130,00	130,00	300
2	130,00	140,00	10,00	ND

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	110,00	110,00	0,00

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
ott/2006	97,00	108,00	11,00	1,500
ott/2006	97,00	108,00	11,00	2,000

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	40,00	40,00		PIROCLASTITI INCOERENTI

2	40,00	105,00	65,00	TUFI CINERITICI CON ALTERNANZA DI LIVELLI DI POMICI E XENOLITI
3	105,00	125,00	20,00	LIVELLI DI GHIAIA E SABBIA SCURA CON LIVELLI DI ROCCIA VULCANICA BASALTICA
4	125,00	140,00	15,00	TUFI CONSISTENTI ALTERNATI A LIVELLI DI TEFRITE VULCANICA E BASANITE

ISPRA - Copyright 2018

Istituto Superiore per la Protezione e la Ricerca **Ambientale**

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Regione: CAMPANIA Provincia: CASERTA

Codice: 17003

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA

Profondità (m): 70,00 Quota pc slm (m): ND Anno realizzazione: 2007 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 2,000 Portata esercizio (l/s): 1,000

Numero falde: 0 Numero filtri: 0 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 4

Longitudine WGS84 (dd): 13,871786 **Latitudine WGS84 (dd):** 41,266333

Longitudine WGS84 (dms): 13° 52′ 18.44″ E **Latitudine WGS84 (dms):** 41° 15′ 58.81″ N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	70,00	70,00	400

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
lug/2007	60,00	63,00	3,00	1,000

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,20	1,20		TERRENO VEGETALE E DI RIPORTO A GRANULOMETRIA SABBIOSA CON LIMO ED ELEMENTI CENTIMETRICI CALCAREI.
2	1,20	5,00	3,80		CINERITI LIMOSE CON SABBIE RICCHE DI POMICI E SCORIE VULCANICHE ETEROMETRICHE
3	5,00	60,00	55,00		PIROCLASTITI LIMOSE DEBOLMENTE SABBIOSE, A TRATTI LITOIDI. COLORE MARRONE-GRIGIO. PRESENZA

				DI POMICI E SCORIE CENTIMETRICHE
4	60,00	70,00	10,00	SABBIE MEDIE E GROSSOLANE PIROCLASTICHE, GRIGIASTRE.

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 17004

Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 70,00

Profondità (m): 70,00 Quota pc slm (m): ND Anno realizzazione: 2007 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 25,000 Portata esercizio (l/s): 6,000

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 4

Longitudine WGS84 (dd): 13,895978 **Latitudine WGS84 (dd):** 41,192625

Longitudine WGS84 (dms): 13° 53' 45.52" E **Latitudine WGS84 (dms):** 41° 11' 33.45" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

H Strade

Strade

Maxar, Microsoft

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	70,00	70,00	500

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	60,00	70,00	10,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	60,00	70,00	10,00	350

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
ott/2007	40,00	45,00	5,00	6,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,20	1,20		TERRENO VEGETALE A GRANULOMETRIA SABBIOSA CON LIMO ED ELEMENTI CENTIMETRICI CALCAREI.
2	1,20	25,00	23,80		PIROCLASTITI POZZOLANICHE LIMO-SABBIOSO GRIGIE
3	25,00	60,00	35,00		SUCCESSIONI DI PIROCLASTITI LIMOSE E TUFITI LIMO-SABBIOSE GRIGIASTRE E MARRONI.
4	60,00	70,00	10,00		DEPOSITI VULCANICI GROSSOLANI SABBIOSO- GHIAIOSI GRIGIASTRI.

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 179705
Regione: CAMPANIA
Provincia: CASERTA
Comune: SESSA AURUNCA
Tipologia: PERFORAZIONE
Opera: POZZO PER ACQUA
Profondità (m): 140,00
Quota pc slm (m): 200,00

Anno realizzazione: 1994 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 10,000 Portata esercizio (l/s): 5,000

Numero falde: 4 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 19

Longitudine WGS84 (dd): 13,950531 **Latitudine WGS84 (dd):** 41,223689

Longitudine WGS84 (dms): 13° 57' 01.91" E **Latitudine WGS84 (dms):** 41° 13' 25.29" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
	0,00	140,00	140,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
4	120,00	140,00	20,00
2	80,00	90,00	10,00
1	60,00	70,00	10,00
3	110,00	117,00	7,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	120,00	140,00	20,00	250

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
feb/1994	110,00	125,00	15,00	5,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
-------	-------------------------	------------------------	--------------	---------------	------------------------

1	0,00	1,00	1,00	QUATERNARIO	TERRENO AGRARIO
2	1,00	5,00	4,00	QUATERNARIO	CINERITE VULCANICA GRIGIA A GRANA SOTTILE, CON INTERCALAZIONI DI PICCOLE SCORIE NERE A SPIGOLI VIVI (2MM
3	5,00	10,00	5,00	QUATERNARIO	COME CAMPIONE PRECEDENTE, MA DI COLORE TENDENTE AL ROSSICCIO
4	10,00	15,00	5,00	QUATERNARIO	PIROCLASTITE DI COLORE ROSSASTRO, COSTITUITA DA UNA MASSA DI FONDO IN CUI SONO FITTAMENTE INTERCALATE SCORIE CHIARE STRIATE VACUOLARI, A SPIGOLI VIVI, NODULI XENOLITICI ARROT. E SCORIE COMPATTE SCURE
5	15,00	20,00	5,00	QUATERNARIO	PIROCLASTITE DI COLORE ROSSICCIO, CARATTERIZZATA DA MASSA DI FONDO SABBIOSA E DA INCULSIONI DI PICCOLE SCORIE E XENOLITI DEBOLMENTE ARROTONDATE
6	20,00	25,00	5,00	OHATEDNADIO	PIROCLASTITE TENDENTE AL ROSSICCIO, CON MASSA DI FONDO SABBIOSA, IN CUI SONO INTERCALATE GROSSE SCORIE VACUOLARI STRIATE (4CM
7	25,00	30,00	5,00		TUFO OCRACEO CON INCUSIONI DI PICCOLE SCORIE E POMICI BIANCHE DEBOLMENTE ARROTONDATE (2MM
8	30,00	35,00	5,00	QUATERNARIO	COME IL PRECEDENTE, MA DI COLORE BRUCIATO
9	35,00	40,00	5,00	QUATERNARIO	TUFO GIALLO POZZOLANICO, CARATTERIZZATO DA INCLUSIONI DI PICCOLE SCORIE E POMICI BIANCHE ARROTONDATE (2MM
10	40,00	45,00	5,00		TUFO CARATTERIZZATO DA INCLUSIONI SCORIACEE E XENOLITICHE NERE LEGGERMENTE ARROTONDATE (1CM
11	45,00	50,00	5,00		"BRECCIOLA PIROCLASTICA" CON MASSA DI FONDO RUDITICA E INTERCALAZIONI DI POMICI BIANCHE ARROTONDATE (2MM
12	50,00	60,00	10,00	QUATERNARIO	TUFO CINERITICO, A GRANA SOTTILE, CON RADA INTERCALAZIONE DI SCORIE VULCANICHE SCURE A SPIGOLI VIVI, (1CM
13	60,00	70,00	10,00		BASALTI FRATTURATI CON TIPICA STRUTTURA BRECCIATA
14	70,00	80,00	10,00	QUATERNARIO	TUFO, COSTITUITO DA LAPILLI DEBOLMENTE ARROTONDATI, CHIARI (1CM
15	80,00	90,00	10,00		BASALTI FRATTURATI: LAVE A TIPICA STRUTTURA BRECCIATA
16	90,00	100,00	10,00	QUATERNARIO	TUFO POZZOLANICO, DI COLORE OCRACEO, A GRANULOMETRIA CINERITICA GROSSOLANA
17	100,00	110,00	10,00		CINERITE ARGILLOSA DOVUTA ALL'ALTERAZIONE DEL TUFO
18	110,00	120,00	10,00	QUATERNARIO	BASALTI FRATTURATI CON STRUTTURA BRECCIATA
19	120,00	140,00	20,00	QUATERNARIO	"BRECCIOLA PIROCLASTICA", COSTITUITA DA LAPILLI A SPIGOLI VIVI (2MM

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 17006

Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 116,00 **Quota pc slm (m):** 15,00 Anno realizzazione: 2005 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 2,500 Portata esercizio (l/s): 2,000

Numero falde: 2 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 6

Longitudine WGS84 (dd): 13,836458 **Latitudine WGS84 (dd):** 41,238386 Longitudine WGS84 (dms): 13° 50′ 11.26″ E **Latitudine WGS84 (dms):** 41° 14′ 18.20″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Prog	gr Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	116,00	116,00	500

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	10,00	15,00	5,00
2	100,00	116,00	16,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	102,00	114,00	12,00	250

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
dic/2005	90,00	ND	ND	ND

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,50	1,50		SUOLO VEGETALE
2	1,50	16,50	15,00		DEPOSITO DEBOLMENTE STRATIFICATO COSTITUITO DALL'ALTERNANZA DI SABBIE LIMOSE E LIMI DA SABBIOSI AD ARGILLOSI DI COLORE DAL GRIGIO AL GIALLO OCRA
3	16,50	78,00	61,50		CENERI DA FINI A GROSSOLANE DI COLORE DAL GRIGIO AL GIALLOGNOLO CON INCLUSI POMICEI ETEROMETRICI (SABBIE DA LIMOSE A GHIAIOSE POCO ADDENSATE)
4	78,00	101,00	23,00		CENERI DA FINI A GROSSOLANE DI COLORE DAL GRIGIO AL GIALLOGNOLO CON INCLUSI POMICEI ETEROMETRICI (SABBIE DA LIMOSE A GHIAIOSE MEDIAM. ADDENSATE)
5	101,00	105,00	4,00		DA CENERI DA FINI A GROSSOLANE DI COLORE DAL GRIGIO AL GIALLOGNOLO CON INCLUSI POMICEI ETEROMETRICI (SABBIE DA LIMOSE A GHIAIOSE POCO ADDENSATE)
6	105,00	116,00	11,00		CENERI DA FINI A GROSSOLANE DI COLORE DAL GRIGIO AL GIALLOGNOLO CON INCLUSI POMICEI ETEROMETRICI, A TRATTI, INTERCALATI NEL DEPOSITO, SI RILEVANO SOTTILI LIVELLI ARGILLOSI (SABBIE DA LIMOSE A GHIAIOSE CON INTERCALATI LIVELLI ARGILLOSI)

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 17015

Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 44,00

Quota pc slm (m): 65,00 Anno realizzazione: 2008 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 2,500 Portata esercizio (l/s): 1,500

Numero falde: 1 Numero filtri: 0 Numero piezometrie: 4 Stratigrafia: SI Certificazione(*): SI Numero strati: 3

Longitudine WGS84 (dd): 13,878578 **Latitudine WGS84 (dd):** 41,274256

Longitudine WGS84 (dms): 13° 52′ 42.89″ E **Latitudine WGS84 (dms):** 41° 16′ 27.32″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	44,00	44,00	250

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	13,00	18,00	5,00

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
set/2008	14,00	17,50	3,50	1,000
set/2008	14,00	19,50	5,50	1,500
set/2008	14,00	25,00	11,00	3,000
set/2008	14,00	20,00	6,00	ND

Prog	r Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	10,00	10,00		TUFI CINERITICI

2	10,00	15,00	5,00	MASSE LAVICHE FRATTURATE
3	15,00	44,00	29,00	TUFI CINERITICI IN "PYROCLASTIC FLOW"

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179537 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 111,00 **Quota pc slm (m):** 20,00 Anno realizzazione: ND Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 10,000 Portata esercizio (l/s): 9,000

Numero falde: 3 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 11

Longitudine WGS84 (dd): 13,857750 **Latitudine WGS84 (dd):** 41,228969

Longitudine WGS84 (dms): 13° 51′ 27.90″ E **Latitudine WGS84 (dms):** 41° 13′ 44.30″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Prog	gr Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	111,00	111,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	27,00	30,00	3,00
2	53,00	57,00	4,00
3	80,00	85,00	5,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	40,00	111,00	71,00	250

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mag/1995	10,00	50,00	40,00	10,000

Maxar, Microsoft

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	0,50	0,50	QUATERNARIO	TERRENO AGRARIO
2	0,50	10,00	9,50	QUATERNARIO	ALLUVIONE SABBIOSA, COSTITUITA DA SEDIMENTI CLASTICI, CON ELEMENTI DI DIAMETRO COMPRESO TRA 0.25 A 2 MM
3	10,00	25,00	15,00	QUATERNARIO	TUFO CINERITICO, A GRANA SOTTILE, CON RADA INTERCALAZIONE DI SCORIE VULCANICHE SCURE A SPIGOLI VIVI DI DIAMETRO COMPRESO TRA 1 E 4 CM
4	25,00	30,00	5,00	QUATERNARIO	ALLUVIONE GHIAIOSA, COSTITUITA DA SEDIMENTI CLASTICI, CON ELEMENTI DI DIAMETRO > 4 MM
5	30,00	40,00	10,00	QUATERNARIO	ALLUVIONE SABBIOSA, FORMATA DA CLASTI DI DIAMETRO COMPRESO TRA 0.25 E 2 MM
6	40,00	50,00	10,00	QUATERNARIO	TUFO POZZOLANICO GIALLO OCRACEO CARATTERIZZATO DA INCLUSIONI SCORIACEE E XENOLITICHE NERE LEGGERMENTE ARROTONDATE DI 1CM
7	50,00	60,00	10,00	QUATERNARIO	BRECCIOLA PIROCLASTICA CON MASSA DI FONDO RUDITICA E INTERCALAZIONI DI POMICI BIANCHE ARROTONDATE DI 2MM
8	60,00	80,00	20,00	QUATERNARIO	TUFO POZZOLANICO CARATTERIZZATO DA INCLUSIONI SCORIACEE E XENOLITICHE NERE LEGGERMENTE ARROTONDATE DI 1CM
9	80,00	85,00	5,00	QUATERNARIO	PIROCLASTITE ROSSASTRA, CON MASSA DI FONDO SABBIOSA, IN CUI SONO INTERCALATE GROSSE SCORIE VACUOLARI STRIATE DI 4CM
10	85,00	100,00	15,00	QUATERNARIO	CINERITE VULCANICA GRIGIA A GRANA SOTTILE, CON INTERCALAZIONI DI PICCOLE SCORIE NERE A SPIGOLI VIVI DI 2MM
11	100,00	111,00	11,00	QUATERNARIO	ARGILLA GRIGIA: LUTITE CON ELEMENTI DI DIAMETRO < 1\256 MM, DOVUTA ALL'ALTERAZIONE IN POSTO DI MATERIALE VULCANICO (ARGILLA RESIDUALE)

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179562 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 187,00 Quota pc slm (m): 200,00 Anno realizzazione: ND Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 2,000 Portata esercizio (l/s): 1,800

Numero falde: 3 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 24

Longitudine WGS84 (dd): 13,936639 **Latitudine WGS84 (dd):** 41,240911

Longitudine WGS84 (dms): 13° 56′ 11.91″ E **Latitudine WGS84 (dms):** 41° 14′ 27.28″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	187,00	187,00	250

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
2	165,00	170,00	5,00
1	150,00	155,00	5,00
3	179,00	184,00	5,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	152,00	187,00	35,00	200

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
giu/1995	150,00	155,00	5,00	2,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00	QUATERNARIO	TERRENO AGRARIO
2	1,00	10,00	9,00	QUATERNARIO	CINERITE VULCANICA GRIGIA A GRANA SOTTILE, CON INTERCALAZIONE DI PICCOLE SCORIE NERE A SPIGOLI VIVI (2MM
3	10,00	25,00	15,00	QUATERNARIO	PIROCLASTITE DI COLORE ROSSASTRO, COSTITUITI DA UNA MASSA DI FONDO (SABBIA, IN CUI SONO FITTAM. INTERCAL. SCORIE CHIARE STRIATE VACUOL. A SPIG. VIVI, NODULI XENOLITICI ARROT. E SCORIE COMPATTE SCURE)
4	25,00	30,00	5,00	QUATERNARIO	TUFO GIALLO OCRACEO, CARATTERIZZATO DA INCLUSIONI DI PICCOLE SCORIE E POMICI BIANCHE (DIAM. CIRCA 2MM)
5	30,00	35,00	5,00	QUATERNARIO	TUFO, COSTITUITO DA LAPILLI (1CM
6	35,00	40,00	5,00	QUATERNARIO	TUFO POZZOLANICO GIALLO OCRACEO A GRANULOMETRIA CINERITICA SOTTILE
7	40,00	45,00	5,00	QUATERNARIO	TUFO, COSTITUITO DA LAPILLI (1CM
8	45,00	50,00	5,00	QUATERNARIO	BRECCIOLA PIROCLASTICA COSTITUITA DA LAPILLI A SPIGOLI VIVI (2MM
9	50,00	60,00	10,00	QUATERNARIO	TUFO CINERITICO, A GRANA FINISSIMA, CON RADA INTERCALAZIONE DI SCORIE VULCANICHE A SPIGOLI VIVI, COSTITUITE DA MINERALI MELANOCRATICI (1CM
10	60,00	70,00	10,00	QUATERNARIO	BASALTI FRATTURATI: LAVE A TIPICA STRUTTURA BRECCIATA
11	70,00	80,00	10,00	QUATERNARIO	TUFO CARATTERIZZATO DA INCLUSIONI DI PICCOLE SCORIE E POMICI BIANCHE (DIAM. CIRCA 2MM)
12	80,00	90,00	10,00	QUATERNARIO	BASALTI FRATTURATI: LAVE A TIPICA STRUTTURA BRECCIATA
13	90,00	100,00	10,00	QUATERNARIO	CINERITE VULCANICA GRIGIA A GRANA SOTTILE, CON INTERCALAZIONE DI PICCOLE SCORIE NERE A SPIGOLI VIVI (2MM
14	100,00	115,00	15,00	QUATERNARIO	PIROCLASTITE DI COLORE ROSSASTRO, COSTITUITI DA UNA MASSA DI FONDO (SABBIA, IN CUI SONO FITTAM. INTERCAL. SCORIE CHIARE STRIATE VACUOL. A SPIG. VIVI, NODULI XENOLITICI ARROT. E SCORIE COMPATTE SCURE)
15	115,00	120,00	5,00	QUATERNARIO	TUFO GIALLO OCRACEO, CARATTERIZZAT DA INCLUSIONI DI PICCOLE SCORIE E POMICI BIANCHE (DIAMETRO CIRCA 2 MM)
16	120,00	125,00	5,00	QUATERNARIO	TUFO, COSTITUITO DA LAPILLI (1CM
17	125,00	130,00	5,00	QUATERNARIO	TUFO POZZOLANICO GIALLO OCRACEO A GRANULOMETRIA CINERITICA SOTTILE
18	130,00	135,00	5,00	QUATERNARIO	TUFO, COSTITUITO DA LAPILLI (1CM
19	135,00	140,00	5,00	QUATERNARIO	A SPIGOLI VIVI (2MM
20	140,00	150,00	10,00	QUATERNARIO	TUFO CINERITICO, A GRANA FINISSIMA, CON RADA INTERCALAZIONE DI SCORIE VULCANICHE A SPIGOLI VIVI, COSTITUITE DA MENERALI MELANOCRATICI (1CM
21	150,00	160,00	10,00	QUATERNARIO	BASALTI FRATTURATI: LAVE A TIPICA STRUTTURA BRECCIATA
22	160,00	180,00	20,00	QUATERNARIO	TUFO CARATTERIZZATO DA INCLUSIONI DI POICCOLE SCORIE E POMICI BIANCHE (DIAMETRO CIRCA 2 MM)

23	180,00	185,00	5,00	QUATERNARIO	BASALTI FRATTURATI: LAVE A TIPICA STRUTTURA BRECCIATA	
24	185,00	187,00	2,00	QUATERNARIO	DESCRIZIONE LITOLOGICA NON PRESENTE	

ISPRA - Copyright 2018

Codice: 179627 Regione: CAMPANIA

Istituto Superiore per la Protezione e la Ricerca **Ambientale**

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Provincia: CASERTA Comune: SESSA AURUNCA Tipologia: PERFORAZIONE

Opera: POZZO PER ACQUA Profondità (m): 70,00 **Quota pc slm (m):** 51,00 Anno realizzazione: 1991 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 11,000 Portata esercizio (l/s): 5,800

Numero falde: 2 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 5

Longitudine WGS84 (dd): 13,870250 **Latitudine WGS84 (dd):** 41,253689

Longitudine WGS84 (dms): 13° 52′ 12.91″ E **Latitudine WGS84 (dms):** 41° 15′ 13.28″ N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	70,00	70,00	400

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	25,00	30,00	5,00
2	40,00	70,00	30,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	35,00	70,00	35,00	400

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
giu/1991	35,00	62,00	27,00	9,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Eta geologica	Descrizione litologica
1	0,00	15,00	15,00	PLEISTOCENE	POZZOLANE SABBIOSE LIMOSE DA POCO A MOLTO CEMENTATE DI COLORE AVANA
2	15,00	24,00	1	PLEISTOCENE	PSEUDOCOERENTI CON POMICLE SCORIE
3	24,00	30,00	6,00	PLEISTOCENE	SABBIE VULCANICHE GRIGIE E GRIGIO SCURE CON POMICI E FRAMMENTI LAVICI
4	30,00	42,00	12,00	PLEISTOCENE	LIVELLI DI POMICI RIMANEGGIATE CON SABBIE LIMOSE VULCANICHE. LENTI DI PALEOSUOLO E TORBE. SOTTILE STRATO DI TUFITE BEIGE FORTEMENTE ADDENSATA
5	42,00	70,00	28,00	PLEISTOCENE	SABBIE ALLUVIONALI MISTE A POMICI, A FRAMMENTI L A L RIMANEGGIATI, SEDE DI FALDA

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Stampa documento

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 179634 Regione: CAMPANIA Provincia: CASERTA Comune: SESSA AURUNCA

Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 116,00 **Quota pc slm (m):** 40,00 Anno realizzazione: 1992 Numero diametri: 2 Presenza acqua: SI

Portata massima (l/s): 25,000 Portata esercizio (l/s): 13,333

Numero falde: 3 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 12

Longitudine WGS84 (dd): 13,889411 **Latitudine WGS84 (dd):** 41,188689

Longitudine WGS84 (dms): 13° 53′ 21.88″ E **Latitudine WGS84 (dms):** 41° 11′ 19.28″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
2	16,00	116,00	100,00	406
1	0,00	16,00	16,00	1000

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
2	64,00	67,00	3,00
1	23,00	25,00	2,00
3	98,00	102,00	4,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	40,00	60,00	20,00	406

ı					
	Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
l	ott/1992	25,00	38,00	13,00	25,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	3,70	3,70		TUFITE VULC. + HUMUS
2	3,70	11,50	7,80		SABBIA POZZOLANICA
3	11,50	28,00	16,50		POZZOLANA SEMIARGILLOSA
4	28,00	37,50	9,50		POZZOLANA CEMENTATA
5	37,50	45,00	7,50		SABBIA ARGILLOSA
6	45,00	61,00	16,00		DETRITO POZZOLANICO CON ACQUA
7	61,00	76,50	15,50		SABBIA GRIGIA
8	76,50	88,00	11,50		SABBIA LIMOSA ALTERATA
9	88,00	93,00	5,00		SABBIA ARGILLOSA PRESSATA
10	93,00	100,00	7,00		SABBIA E GHIAIE CON ACQUA
11	100,00	105,00	5,00		LIVELLO DI ARGILLA
12	105,00	116,00	11,00		DESCRIZIONE LITOLOGICA NON PRESENTE

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179702 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 116,00 **Quota pc slm (m):** 40,00 Anno realizzazione: 1992 Numero diametri: 2 Presenza acqua: SI

Portata massima (l/s): 25,000 Portata esercizio (l/s): 13,333

Numero falde: 3 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 12

Longitudine WGS84 (dd): 13,889139 **Latitudine WGS84 (dd):** 41,189800 **Longitudine WGS84 (dms):** 13° 53′ 20.90″ E **Latitudine WGS84 (dms):** 41° 11' 23.28" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
2	16,00	116,00	100,00	406
1	0,00	16,00	16,00	1000

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
3	98,00	102,00	4,00
1	23,00	25,00	2,00
2	64,00	67,00	3,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	40,00	60,00	20,00	406

ı					
	Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
l	ott/1992	25,00	38,00	13,00	25,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	3,70	3,70		TUFITE VULC. + HUMUS
	3,70	11,50	7,80		SABBIA POZZOLANICA
3	11,50	28,00	16,50		POZZOLANA SEMIARGILLOSA
4	28,00	37,50	9,50		POZZOLANA CEMENTATA
5	37,50	45,00	7,50		SABBIA ARGILLOSA
6	45,00	61,00	16,00		DETRITO POZZOLANICO CON ACQUA
7	61,00	76,50	15,50		SABBIA GRIGIA
8	76,50	88,00	11,50		SABBIA LIMOSA ALTERATA
9	88,00	93,00	5,00		SABBIA ARGILLOSA PRESSATA
10	93,00	100,00	7,00		SABBIA E GHIAIE CON ACQUA
11	100,00	105,00	5,00		LIVELLO DI ARGILLA
12	105,00	116,00	11,00		DESCRIZIONE LITOLOGICA NON PRESENTE

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Dati generan

Codice: 179733
Regione: CAMPANIA
Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 70,00 Quota pc slm (m): 20,00 Anno realizzazione: 1992

Numero diametri: 2 Presenza acqua: SI

Portata massima (l/s): 15,000 Portata esercizio (l/s): 12,000

Numero falde: 3 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 4

Longitudine WGS84 (dd): 13,872189 **Latitudine WGS84 (dd):** 41,282581

Longitudine WGS84 (dms): 13° 52′ 19.89″ E **Latitudine WGS84 (dms):** 41° 16′ 57.29″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
2	30,00	70,00	40,00	280
1	0,00	30,00	30,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	12,00	16,00	4,00
3	60,00	65,00	5,00
2	42,00	47,00	5,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	34,00	37,00	3,00	250

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
dic/1992	12,00	18,00	6,00	13,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TERRENO VEGETALE
2	1,00	35,00	34,00		PRODOTTI PIROCLASTICI INCOERENTI IN MARICE CINERITICACON FRAMMENTI LITICI LEUCITICI
3	35,00	50,00	15,00		SABBIE E CENERI VULCANICHE CON INCLUSIONI DI SCORIE, LAVA ECC
4	50,00	70,00	20,00		PIROCLASTITI DI MEDIE E GROSSE DIMENSIONI (SCORIE SALDATE, ELEMENTI DI COLATE LAVICHE TEFRITICHE-LEUCITICHE)

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179780 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 80,00 **Quota pc slm (m):** 60,00 Anno realizzazione: 1995 Numero diametri: 2

Portata massima (l/s): 20,000 Portata esercizio (l/s): 15,000

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 8

Presenza acqua: SI

Longitudine WGS84 (dd): 13,889969 **Latitudine WGS84 (dd):** 41,233969

Longitudine WGS84 (dms): 13° 53′ 23.90″ E **Latitudine WGS84 (dms):** 41° 14′ 02.30″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	38,00	38,00	350
2	38,00	80,00	42,00	270

FALDE ACQUIFERE

Progr		Da profondità (m)		A profondità (m)	Lunghezza (m)
1	58,00		58,00		0,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	58,00	80,00	22,00	ND

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
apr/1995	53,00	ND	ND	ND

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TERRENOVEGETALE MOLTO AREATO
2	1,00	20,00	19,00		DEPOSITI PIROCLASTICI DEL QUATERNARIO RICCHI DI POMICI E SCORIE DI PICCOLO E MEDIO DIAMETRO LEGGERMENTE ARGLIFICATI, VARIAMENTE ADDENSATI E CROMATICAMENTE DIFFERENZIATI CON ABBONDANTE MATRICE DI FINO
3	20,00	30,00	10,00		TUFO GRIGIO CAMPANO LITOIDE DEL QUATERNARIO, PIPERNOIDE ALLA BASE
4	30,00	38,00	8,00		DEPOSITI PIROCLASTICI RICCHI DI BRANDELLI LAVICI CON DIMENSIONI INFERIORI A 1 CM E SCARSA MATRICE DI FINO IN ABBONDANTE CIRCOLAZIONE IDRICA
5	38,00	45,00	7,00		LAVA BASALTICA
6	45,00	47,00	2,00		DEPOSITI PIROCLASTICI RICCHI DI BRANDELLI LAVICI CON DIMENSIONI INFERIORI A 1 CM E SCARSA MATRICE DI FINO IN ABBONDANTE CIRCOLAZIONE IDRICA
7	47,00	58,00	11,00		LAVA BASALTICA
8	58,00	80,00	22,00		DEPOSITI PIROCLASTICI RICCHI DI BRANDELLI LAVICI CON DIMENSIONI INFERIORI A 1 CM E SCARSA MATRICE DI FINO IN ABBONDANTE CIRCOLAZIONE IDRICA

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 179824 Regione: CAMPANIA Provincia: CASERTA Comune: SESSA AURUNCA Tipologia: PERFORAZIONE **Opera:** POZZO PER ACQUA Profondità (m): 55,00 Quota pc slm (m): 5,00 Anno realizzazione: 1997 Numero diametri: 1 Presenza acqua: SI

Portata esercizio (l/s): ND Numero falde: 1 Numero filtri: 0 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 7

Portata massima (l/s): ND

Longitudine WGS84 (dd): 13,816361 **Latitudine WGS84 (dd):** 41,240361

Longitudine WGS84 (dms): 13° 48′ 58.91″ E Latitudine WGS84 (dms): 41° 14' 25.31" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

	Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
l	1	0,00	55,00	55,00	400

FALDE ACQUIFERE

Progr	Da profondità (m	A profor	ndità (m) Lunghezza (m)	
1	7,00	7,00	0,00	

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
ago/1997	7,00	9,32	2,32	13,300

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,40	1,40		TERRENO VEGETALE/RIMOSSO
2	1,40	4,50	3,10		LIMO ARGILLOSO GRIGIO
3	4,50	6,40	1,90		SABBIA LIMOSA
4	6,40	13,00	6,60		LIMO GRIGIO RICCO DI HUMUS
5	13,00	15,50	2,50		POZZOLANA POCO ADDENSATA CON PICCOLE POMICI E SCORIE
6	15,50	20,00	4,50		DEPOSITO SABBIOSO GRIGIO SCURO
7	20,00	55,00	35,00		DEPOSITO SABBIOSO LIMOSO CON RESTI ORGANICI DI ORIGINE MARINA (BIVALVI)

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179837 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 198,00 **Quota pc slm (m):** 200,00 Anno realizzazione: 1998 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 0,833 Portata esercizio (l/s): ND

Numero falde: 1 Numero filtri: 0 Numero piezometrie: 0 Stratigrafia: SI Certificazione(*): SI Numero strati: 4

Longitudine WGS84 (dd): 13,930531 **Latitudine WGS84 (dd):** 41,239519

Longitudine WGS84 (dms): 13° 55′ 49.91″ E **Latitudine WGS84 (dms):** 41° 14′ 22.28″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

]	Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1		0,00	198,00	198,00	200

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	172,00	172,00	0,00

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TUFO CINERITICO MEDIAMENTE ADDENSATO, MARRONE
2	1,00	80,00	79,00		TUFO CINERITICO ADDENSATO GIALLASTRO
3	80,00	180,00	100,00		TUFO CINERITICO CON PRESENZA DI QUALCHE INCLUSIONE LITICA-MARRONE
4	180,00	198,00	18,00		MATERIALI LAVICI

Maxar, Microsoft

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179843

Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA **Profondità (m):** 200,00 Quota pc slm (m): 205,00 Anno realizzazione: 1998 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 10,000 Portata esercizio (l/s): 1,800

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 2

Longitudine WGS84 (dd): 13,931081 **Latitudine WGS84 (dd):** 41,240911

Longitudine WGS84 (dms): 13° 55' 51.89" E **Latitudine WGS84 (dms):** 41° 14′ 27.28″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	200,00	200,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	170,00	198,00	28,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	150,00	200,00	50,00	200

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
nov/1998	156,00	161,00	5,00	1,800

STRATIGRAFIA

Maxar, Microsoft

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	170,00	170,00	SUPERIORE	TUFITI AVANA RICCHE DI POMICI, FRAMMENTI LAVICI CON LIVELLI DI CINERITI
2	170,00	200,00	30,00		RECCE VULCANICHE CON LIVELLI SABBIOSI

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 179845 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA **Profondità (m):** 206,00 Quota pc slm (m): 230,00 Anno realizzazione: 1998 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 10,000 Portata esercizio (l/s): 1,200

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 5

Longitudine WGS84 (dd): 13,932469 **Latitudine WGS84 (dd):** 41,244250 **Longitudine WGS84 (dms):** 13° 55′ 56.89″ E **Latitudine WGS84 (dms):** 41° 14′ 39.31″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	206,00	206,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	178,00	206,00	28,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	150,00	206,00	56,00	200

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
dic/1998	170,00	180,00	10,00	1,200

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	60,00	60,00	PLEISTOCENE	PIROCLASTITI AVANA CINERITICHE
2	60,00	84,00	24,00	PLEISTOCENE	TUFITI CINERITICI GRIGI
3	84,00	178,00	94,00	PLEISTOCENE	TUFO BRUNO CON LIVELLI DI XENOLITI
4	178,00	189,00	11,00	PLEISTOCENE	SCORIE E FRAMMENTI LAVICI GROSSOLANI INCOERENTI
5	189,00	206,00	17,00	PLEISTOCENE	BRECCE VULCANICHE POMICI E LAPILLI

ISPRA - Copyright 2018

Ubicazione indicativa dell'area d'indagine

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179848 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 100,00 **Quota pc slm (m):** 70,00 Anno realizzazione: 2000 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 10,000 Portata esercizio (l/s): 5,000

Numero falde: 1 Numero filtri: 0 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 4

Longitudine WGS84 (dd): 13,900519 **Latitudine WGS84 (dd):** 41,228969

Longitudine WGS84 (dms): 13° 54′ 01.88″ E **Latitudine WGS84 (dms):** 41° 13′ 44.30″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Strade

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	100,00	100,00	320

FALDE ACQUIFERE

Progr		Da profondità (m)		A profondità (m)	Lunghezza (m)
1	50,00		50,00		0,00

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
ott/2000	50,00	60,00	10,00	5,000

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	33,00	33,00		SABBIE VULCANICHE SOTTILMENTE STRATIFICATE, CON INTERCALAZIONI DI CINERITI,

Maxar, Microsoft

					POMICI E LAPILLI SOTTILI ED INCOERENTI
2	33.00	40.00	7.00	OLIATERNARIO	ROCCIA LAVICA DI NATURA FONOLITICA
	33,00	70,00	7,00	QUATERNARIO	LEUCITICA
3	40.00	50.00	10.00	OHATERNARIO	PIROCLASTITE CON GRANULOMETRIA MOLTO PROSSIMA ALLE CINERITI
3	40,00	30,00	10,00	QUATERNARIO	PROSSIMA ALLE CINERITI
					DEPOSITI PIROCLASTICI E SABBIE VULCANICHE
4	50,00	100,00	50,00	QUATERNARIO	CON INTERCALAZIONI DI CINERITI, POMICI E
					LAPILLI SOTTILI ED INCOERENTI

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179860 Regione: CAMPANIA

Provincia: CASERTA
Comune: SESSA AURUNCA
Tipologia: PERFORAZIONE
Opera: POZZO PER ACQUA
Profondità (m): 65,00
Quota pc slm (m): 65,00
Anno realizzazione: 2000

Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 8,000 Portata esercizio (l/s): 3,000

Numero falde: 1 Numero filtri: 0 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 1

Longitudine WGS84 (dd): 13,890250 **Latitudine WGS84 (dd):** 41,219800

Longitudine WGS84 (dms): 13° 53′ 24.91″ E **Latitudine WGS84 (dms):** 41° 13′ 11.28″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	65,00	65,00	320

FALDE ACQUIFERE

Progr		Da profondità (m)	A p	rofondità (m)	Lunghezza (m)
1	30,00		30,00		0,00

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
ott/2000	30,00	38,00	8,00	3,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	65,00	65,00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DEPOSITI PIROCLASTICI TUFACEI CON RARI FRAMMENTI LAVICI E CON POMICI RIMANEGGIATE,

ALTERNATI A SABBIE VULCANICHE, LAPILLI E CENERI SOTTILMENTE STRATIFICATE

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179863 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 136,00 Quota pc slm (m): 3,00 Anno realizzazione: 2001 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 30,000 Portata esercizio (l/s): 10,000

Numero falde: 4 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 9

Longitudine WGS84 (dd): 13,806631 **Latitudine WGS84 (dd):** 41,195081

Longitudine WGS84 (dms): 13° 48′ 23.87″ E **Latitudine WGS84 (dms):** 41° 11′ 42.29″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	136,00	136,00	315

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
2	67,00	74,00	7,00
4	132,00	136,00	4,00
1	32,00	54,00	22,00
3	91,00	108,00	17,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	130,00	136,00	6,00	250

ı					
	Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
	mar/2001	-5,00	15,00	20,00	10,000

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	12,00	12,00	QUAT.	SABBIA GIALLASTRA EOLICA
2	12,00	32,00	20,00	PLEISTOCENE	ARGILLA GRIGIA
3	32,00	54,00	22,00	PLEISTOCENE	SABBIE GRIGIO AZZURRE CON LIVELLI DI GHIAIA
4	54,00	67,00	13,00	PLEISTOCENE	ARGILLA AZZURRA
5	67,00	74,00	7,00	PLEISTOCENE	SABBIA GROSSOLANA SCURA CON CLASTI CALCAREI BIANCASTRI
6	74,00	91,00	17,00	PLEISTOCENE	ARGILLA GRIGIA
7	91,00	108,00	17,00	PLEISTOCENE	SABBIA QUARZOSA
8	108,00	132,00	24,00	PLEISTOCENE	ARGILLA GRIGIO AZZURRA
9	132,00	136,00	4,00	PLEISTOCENE	SABBIA SCURA CON POMICI

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179901 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 35,00 **Quota pc slm (m):** 160,00 Anno realizzazione: ND Numero diametri: 1

Presenza acqua: SI Portata massima (l/s): 2,000 Portata esercizio (l/s): 1,800

Numero falde: 2 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 6

Longitudine WGS84 (dd): 13,927750 **Latitudine WGS84 (dd):** 41,229519

Longitudine WGS84 (dms): 13° 55′ 39.90″ E **Latitudine WGS84 (dms):** 41° 13′ 46.28″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	35,00	35,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	15,00	20,00	5,00
2	27,00	30,00	3,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	10,00	35,00	25,00	250

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mag/1995	10,00	25,00	15,00	2,000

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	0,50	0,50	QUATERNARIO	TERRENO AGRARIO
2	0,50	5,00	4,50		CINERITE VULCANICA GRIGIA A GRANA SOTTILE, CON INTERCALAZIONI DI PICCOLE SCORIE NERE A SPIGOLI VIVI DI 2MM
3	5,00	10,00	5,00	QUATERNARIO	CINERITE VULCANICA ROSSICCIA, CARATERIZZATA DA INCLUSIONI DI SCORIE VULCANICHE MELANOCRATICHE A SPIGOLI VIVI DI 1CM
4	10,00	25,00	15,00	`	PIROCLASTITE ROSSASTRA, CON MASSA DI FONDO SABBIOSA, IN CUI SONO INTERCALATE GROSSE SCORIE VACUOLARI STRIATE DI 4CM
5	25,00	30,00	5,00	QUATERNARIO	TUFO OCRACEO, COSTITUITO DA LAPILLI CHIARI DEBOLMENTE ARROTONDATI DI 1CM
6	30,00	35,00	5,00	QUATERNARIO	TUFO GIALLO POZZOLANICO, CARATTERIZZATO DA INCLUSIONI DI PICCOLE SCORIE E POMICI LEUCOCRATICHE ARROTONDATE DI 2MM

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Dati generai

Codice: 179959

Provincia: CASERTA Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA

Regione: CAMPANIA

Profondità (m): 60,00 Quota pc slm (m): 35,00 Anno realizzazione: 2003 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 4,000 Portata esercizio (l/s): 2,000

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 2

Longitudine WGS84 (dd): 13,874969 **Latitudine WGS84 (dd):** 41,198689

Longitudine WGS84 (dms): 13° 52' 29.90" E **Latitudine WGS84 (dms):** 41° 11' 55.28" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine + - Strade

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	60,00	60,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	18,00	18,00	0,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	20,00	50,00	30,00	200

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
ago/2003	18,00	21,00	3,00	2,000

STRATIGRAFIA

Maxar, Microsoft

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	40,00	40,00	QUATERNARIO	ALTERNANZA DI LIMI SABBIOSI, SUPERFICIALEMNTE DEBOLMENTE ARGILLOSI, E SABBIE LIMOSE DI NATURA PIROCLASTICA, CON INTERCALAZIONI DI POMICI, LAPILLI SCORIE E FRAMMENTI LAVICI IN LIVELLI SOTTILMENTE STRAT
2	40,00	60,00	20,00	QUATERNARIO	ALTERNANZA DI LIMI ARGILLOSI E LIMI SABBIOSO- ARGILLOSI CON RARI ELEMENTI GHIAIOSI E INCLUSI DI TIPO VEGETALE

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 179977 Regione: CAMPANIA Provincia: CASERTA

Comune: SESSA AURUNCA Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 172,00 Quota pc slm (m): 133,00 Anno realizzazione: 1999 Numero diametri: 1

Presenza acqua: SI Portata massima (l/s): 2,000 Portata esercizio (l/s): ND

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 6

Longitudine WGS84 (dd): 13,925250 **Latitudine WGS84 (dd):** 41,227581

Longitudine WGS84 (dms): 13° 55′ 30.91″ E **Latitudine WGS84 (dms):** 41° 13′ 39.29″ N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	172,00	172,00	300

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	130,00	172,00	42,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	130,00	172,00	42,00	250

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
set/1999	130,00	135,00	5,00	ND

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	2,00	2,00		TERRENO AGRARIO
2	2,00	25,00	23,00		POZZOLANA INCOERENTE
3	25,00	80,00	55,00		TUFO COMPATTO DI COLORE GRIGIO SCURO AD ELEMENTI LAPILLICI E POZOLANICI
4	80,00	102,00	22,00		POZZOLANA INCOERENTE DA MARRONE A GRIGIO
5	102,00	130,00	28,00		TUFO COMPATTO DI COLORE GRIGIO SCURO AD ELEMENTI SCORIACEI E POZZOLANICI
6	130,00	172,00	42,00		LAPILLO SCORIACEO SEDE DI FALDA ACQUIFERA

ISPRA - Copyright 2018

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 181221
Regione: CAMPANIA
Provincia: CASERTA
Comune: SESSA AURUNCA
Tipologia: PERFORAZIONE
Opera: POZZO PER ACQUA

Profondità (m): 147,00 Quota pc slm (m): 2,00 Anno realizzazione: 2005 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 80,000 Portata esercizio (l/s): 9,000

Numero falde: 4 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 20

Longitudine WGS84 (dd): 13,786631 **Latitudine WGS84 (dd):** 41,210911

Longitudine WGS84 (dms): 13° 47′ 11.88″ E **Latitudine WGS84 (dms):** 41° 12′ 39.29″ N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
	0,00	147,00	147,00	500

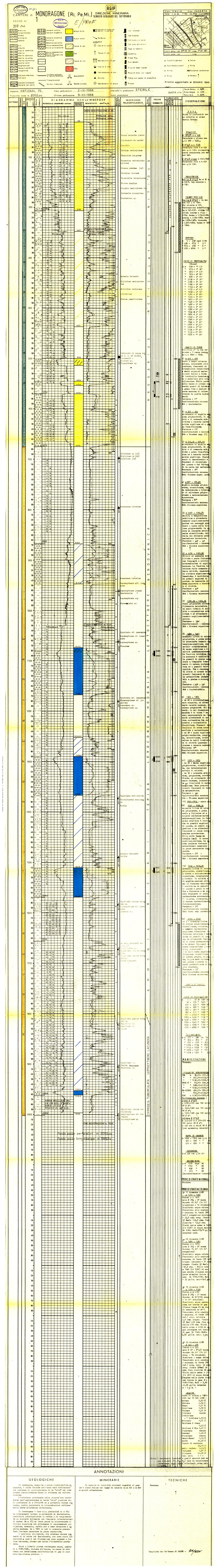
FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
4	118,00	130,00	12,00
1	1,00	7,00	6,00
2	56,00	56,50	0,50
3	91,00	97,00	6,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	91,00	130,00	39,00	273

MISURE PIEZOMETRICHE


Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
giu/2005	-2,50	1,50	4,00	9,000

STRATIGRAFIA

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TERRENO DI RIPORTO
2	1,00	7,00	6,00		SABBIA

3	7,00	56,00	49,00	ARGILLA
4	56,00	56,50	0,50	SABBIA GROSSOLANA
5	56,50	57,00	0,50	ARGILLA
6	57,00	60,50	3,50	GHIAIA E SABBIA
7	60,50	67,50	7,00	ARGILLA SABBIOSA
8	67,50	77,00	9,50	ARGILLA
9	77,00	81,00	4,00	SABBIA
10	81,00	97,50	16,50	ARGILLA SABBIOSA
11	97,50	102,00	4,50	ARGILLA
12	102,00	110,00	8,00	SABBIA GROSSOLANA
13	110,00	111,50	1,50	ARGILLA
14	111,50	117,50	6,00	ARGILLA
15	117,50	120,00	2,50	SABBIA GROSSOLANA
16	120,00	121,00	1,00	SABBIE CEMENTATE
17	121,00	125,00	4,00	SABBIA CON ARGILLA
18	125,00	130,50	5,50	SABBIA
19	130,50	141,50	11,00	ARGILLA SABBIOSA
20	141,50	147,00	5,50	ARGILLA

ISPRA - Copyright 2018

Campagna indagini geognostiche - **anno 2007**Sondaggi a carotaggio continuo
Prove penetrometriche tipo CPT e DPSH

- Monitoraggio Ambientale
- Prospezioni Geofisiche Sondaggi Geognostici
- Log Sonici su Pal
- Geologia Applicata
- Well Point
- Micropali
- Controlli

Via A. Costa –S. Maria C.V. (CE) - **2** 0823 589086 – Fax 0823 699800 P.IVA 03198890612 -www.sogeosrl.it – e-mail: sogeo@tin.it

Indagini geognostiche

COMMITTENTE: DIPARTIMENTO DI CULTURA DEL PROGETTO

SECONDA UNIVERSITÀ DI NAPOLI

CRDC BENECON

OGGETTO: INDAGINI GEOGNOSTICHE FINALIZZATE ALLA REDAZIONE DEL PUC

CANTIERE: SESSA AURUNCA (CE)

	CRdC BENECON/A. R.2007	N° DI PAG. 13 escl. All.	Rev. n° 0 del 10/05/2007
--	------------------------	--------------------------	--------------------------

ELABORAZIONE

Dr. Geol. Marco Cavallaro

APPROVAZIONE

® ⊙ppyright © by So. Geo ∵ S.r.l. Nessuna parte di questa relazione (disegno) e/o progetto può essere riprodotta, pubblicata e/o passata a terzi, senza il consenso scritto della So.Geo srl

Dr. Geol. Nicola Maione

JOB: Soluzioni Geotecniche s.r.l. Pag. 1 di 13

INDICE

PREMESSA	pag. 2
1. SONDAGGI GEOGNOSTICI	pag. 2
1.1 STANDARD PENETRATION TEST	pag. 5
2. PROVE PENETROMETRICHE	pag. 8
2.1 PROVE PENETROMETRICHE STATICHE (CPT)	pag. 9
2.2 Prove penetrometriche dinamiche superpesanti (DPSH)	pag. 11

ALLEGATI:

- **STRATIGRAFIE**
- VERBALE DI CONSTATAZIONE PER IL SONDAGGIO S2
- CERTIFICATI CON TABELLE E GRAFICI RELATIVI ALLE PENETROMETRIE
- DOCUMENTAZIONE FOTOGRAFICA
- UBICAZIONE DELLE INDAGINI

PREMESSA

A seguito dell'aggiudicazione della gara di appalto indetta dal Dipartimento di Cultura del Progetto (Seconda Università di Napoli), la Soluzioni Geotecniche S.r.l. ha eseguito una campagna di indagini geognostiche allo scopo di determinare le caratteristiche geotecniche e litostratigrafiche di terreni ricadenti nel territorio comunale di Sessa Aurunca (CE) e di supporto alla redazione dell'allegato geologico-tecnico del Piano Urbanistico Comunale.

JOB:

Il piano di indagine, come da apposito ordine di lavoro, si è concretizzato nella realizzazione di:

- n° 16 Sondaggi Geognostici a Carotaggio Continuo;
- n° 25 Standard Penetration Test;
- n° 10 prelievi di campioni indisturbati;
- n° 15 Prove penetrometriche statiche (CPT)
- n° 8 Prove penetrometriche dinamiche (DPSH)

Si allegano alla presente le ubicazioni delle indagini eseguite, le relative stratigrafie, i certificati delle penetrometrie e le foto di particolari d'indagine.

1. SONDAGGI GEOGNOSTICI

Sono stati eseguiti nº 16 sondaggi a carotaggio continuo che hanno avuto lo scopo di:

- ricostruire il profilo stratigrafico mediante l'esame delle carote estratte;
- effettuare prove meccaniche in foro tipo SPT (Standard Penetration Test);
- prelevare campioni indisturbati;
- condizionare i fori di 9 sondaggi per le prove sismiche "Down Hole".

I sondaggi, hanno raggiunto le seguenti profondità dal locale piano campagna:

SONDAGGIO	PROFONDITÀ DAL P.C. (m)	METODO DI PERFORAZIONE
S_1	32.00	Rotazione con carotiere semplice a secco
\mathbf{S}_2	25.00	Rotazione con carotiere semplice a secco
S_3	33.50	Rotazione con carotiere semplice a secco

Soluzioni Geotecniche s.r.l.

JOB:

Revisione 0 del 09/05/2007
Pag. 3 di 13

S ₄	34.50	Rotazione con carotiere semplice a secco
S ₅	32.00	Rotazione con carotiere semplice a secco
S ₆	32.00	Rotazione con carotiere semplice a secco
S ₇	33.00	Rotazione con carotiere semplice a secco
S ₈	32.00	Rotazione con carotiere semplice a secco
S ₉	34.00	Rotazione con carotiere semplice a secco
S ₁₀	32.00	Rotazione con carotiere semplice a secco
S ₁₁	32.00	Rotazione con carotiere semplice a secco
S ₁₂	32.00	Rotazione con carotiere semplice a secco
S ₁₃	32.00	Rotazione con carotiere semplice a secco
S ₁₄	32.00	Rotazione con carotiere semplice a secco
S ₁₅	32.00	Rotazione con carotiere semplice a secco
S ₁₆	32.00	Rotazione con carotiere semplice a secco

Per l'esecuzione dei sondaggi è stata utilizzata una sonda di perforazione tipo **PSM 980-G** avente le seguenti caratteristiche:

- attrezzatura a testa di rotazione idraulica;
- velocità di rotazione di 0-600 giri-min;
- coppia massima = 420 Kgm;
- spinta sulla testa di rotazione Kg 3000;
- avanzamento idraulico testa di rotazione;
- carro cingolato;
- doppia morsa idraulica;
- argano idraulico;
- freno blocca aste;
- carotieri semplici e doppi azionati a circolazione diretta mediante batterie di aste, di diametro Ø101-113 mm di lunghezza pari a 3.00 m.

PSM 980-G

JOB:

Le carote estratte dai sondaggi a carotaggio continuo, utilizzate per la ricostruzione stratigrafica delle verticali investigate, sono state sistemate nelle apposite cassette catalogatrici in PVC, munite di scomparti divisori e coperchio apribile.

Ogni cassetta è stata fotografata con una macchina digitale BENQ DC C540.

I certificati relativi alle stratigrafie, che si allegano, contengono le seguenti informazioni:

- indicazioni sul cantiere;
- committente;
- numero progressivo;
- lunghezza del sondaggio;
- scala grafica;
- nominativi degli operatori e del responsabile di cantiere;
- profondità dal p.c. dei vari litotipi;
- spessori dei vari litotipi attraversati;

• descrizione litologica.

1.1 STANDARD PENETRATION TEST

La prova SPT viene eseguita nel corso della perforazione in modo discontinuo ed è standardizzata dalle seguenti norme:

• A.G.I.- Associazione Geotecnica Italiana (1977):

Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche.

◆ A.S.T.M.-D1586-67(74); D1586-84:

Standard method for Penetration test and Split-Barrel Sampling of Soils.

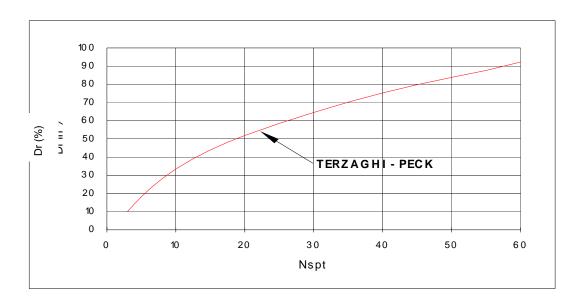
• ISSMFE Techn. Committee (1988):

Standard Penetration Test (SPT): International Reference Test Procedure.

Dopo la pulizia del foro sono state svolte le seguenti operazioni:

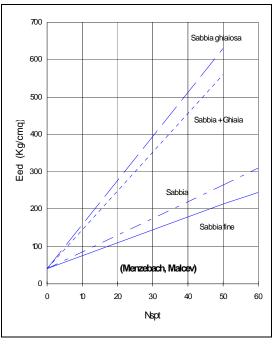
- impiego di un dispositivo per lo sganciamento del maglio con peso di 63.5 Kg da un'altezza di caduta pari a 76 cm; la massa battente corre lungo le aste di collegamento al terminale di infissione;
- infissione del campionatore Raymond con superfici lisce apribile longitudinalmente aventi le seguenti caratteristiche:
 - diametro esterno = 51 mm
 - diametro interno = 35 mm
 - lunghezza L = 457 mm
 - lunghezza scarpa 1 = 76 mm
 - angolo scarpa $\alpha = 16^{\circ}$ 23°

L'esecuzione della prova ha seguito le successive fasi:


- controllo con scandaglio della quota del fondo foro raggiunta;
- calo a fondo foro dell'attrezzatura di prova;
- infissione preliminare dei primi 15 cm e dei successivi 30 cm contando separatamente il numero dei colpi per ogni tratto di 15 cm.

CAMPIONATORE RAYMOND

JOB:


In figura 1, 2 e 3, si riportano alcune curve rappresentative con le quali, tramite opportune correlazioni, è possibile acquisire dati sul comportamento a rottura e sulla deformabilità dei terreni investigati :

Soluzioni Geotecniche s.r.l.

JOB: Revisione 0 del 09/05/2007
Pag. 7 di 13

Figura 1 Densità relativa in funzione di Nspt

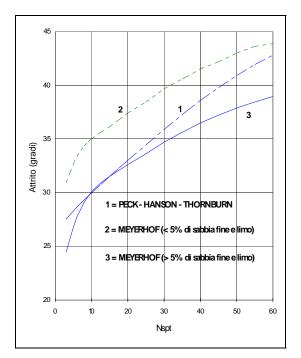


Figura 2 Modulo edometrico in funzione di Nspt

Figura 3 Angolo di attrito in funzione di Nspt

A seguire viene presentata una tabella riepilogativa delle prove Standard Penetration Test realizzate e una restituzione grafica delle stesse, costruita in base al numero di colpi (Nspt) ed alle profondità riferite ai sondaggi S1 ed S3:

TABELLA RIASSUNTIVA PROVE SPT											
SONDAGGIO	PROFONDITÀ	SPT	COLPI	N _{SPT}							
(n°)	(m)	(n°)	(n°)								
S1	6.0	1	7-12-11	23							
S2	7.5	1	3-2-3	5							
S3	4.5	1	12-16-18	34							
83	12.0	2	18-37-49	60							
S4	3.5	1	12-12-13	25							
54	12.0	2	12-15-20	35							
Q.E	6.5	1	11-10-15	25							
S5	12.5	2	15-18-21	39							
S6	6.0	1	15-20-16	36							
97	2.5	1	8-12-9	21							
S7	5.0	2	28-RIF	60							
CO	10.0	1	18-32-38	60							
S8	20.0	2	10-15-23	38							
	TABELLA RIASSUI	NTIVA PROV	/E SPT								
SONDAGGIO	PROFONDITÀ	SPT	COLPI	N _{SPT}							
(n°)	(m)	(n°)	(n°)								
S9	3.0	1	30-RIF	60							
39	10.50	2	8-12-18	30							
S10	3.0	1	18-18-25	43							
510	7.5	2	20-32-45	60							
S11	6.0	1	2-4-5	9							
S12	11.0	1	5-5-6	11							
S13	5.0	1	18-25-28	53							
		4	4-4-5	0							
S14	4.0	1	4-4-3	9							
S14	3.0	1	7-9-10	19							
				_							
S14	3.0	1	7-9-10	19							

JOB:

2. PROVE PENETROMETRICHE

Sono state eseguite, nell'area d'interesse 23 prove penetrometriche, di cui 15 prove penetrometriche statiche (CPT) e 8 dinamiche superpesanti (DPSH), che hanno consentito di caratterizzare meccanicamente le litologie del sito in studio (vd. elaborati in allegato).

Le indagini sono state effettuate utilizzando un penetrometro autoancorante statico/dinamico della Pagani.

FOTO 5: PENETROMETRO AUTOANCORANTE PAGANI

2.1 Prove penetrometriche statiche (CPT)

Questo tipo di prova consiste nella misura della resistenza alla penetrazione di una punta conica infissa a velocità costante nel terreno (2cm/sec), secondo le norme **ASTM** (American Society for Testing Material). L'infissione avviene per mezzo di un dispositivo di spinta che agisce su di una batteria di aste alla cui estremità è collegata la punta. E' stata utilizzata una punta di tipo **Begemann** standardizzata, munita di manicotto nella parte superiore per la misura dell'attrito laterale.

FOTO 6: PARTICOLARE PUNTA BEGEMANN

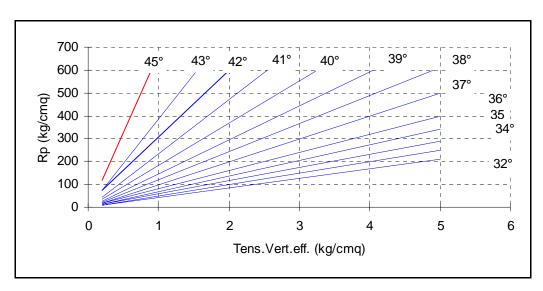
Soluzioni Geotecniche s.r.l.

JOB: Revisione 0 del 09/05/2007
Pag. 10 di 13

Le dimensioni della punta e del manicotto sono:

- ➤ diametro di base del cono = 35.7 mm;
- ➤ angolo di apertura del cono = 60 gradi;
- > friction jacket = 150 cmq;
- ➤ diametro esterno delle aste = 36 mm.

Con questo sistema di indagine si rileva la resistenza della punta (Q_c) , la resistenza laterale locale (F_s) e la resistenza della batteria di aste (Q_c+F_s) .


Le misure vengono di norma annotate ogni 20 cm di penetrazione.

L'esecuzione di prove penetrometriche consente di ottenere, nota la stratigrafia, informazioni valide ai fini della ricostruzione dei profili geotecnici. Sulle stesse tabelle è riportato il valore del rapporto di frizione $\mathbf{X} = \mathbf{Q}_o/\mathbf{F}_s$ calcolato per ogni misura.

Questo rapporto consente, attraverso una correlazione empirica, di associare caratteristiche granulometriche alla resistenza meccanica dei terreni attraversati.

Torbe ed Argille organiche	0 <x<15< th=""></x<15<>
Limi ed Argille	15 <x<30< td=""></x<30<>
Limi sabbiosi e sabbie limose	30 <x<60< td=""></x<60<>
Sabbie e Sabbie con ghiaie	X>60

Le curve rappresentative della funzione, resistenza alla punta/resistenza laterale con la profondità, permettono tramite opportune correlazioni, di acquisire dati sul comportamento a rottura e sulla deformabilità dei materiali investigati.

JOB:

Correlazione Rp/ ϕ

I risultati delle prove sono contenuti nell'allegato, "Prove penetrometriche statiche", dove per ogni prova sono stati forniti:

- a) la tabella valori in cui viene riportata la profondità di infissione "P", la resistenza specifica alla punta "Qc", la resistenza laterale locale "RL", la resistenza specifica al manicotto "FS" e l'indice granulometrico "X";
- b) la tabella valori in cui viene riportata la profondità di infissione "P", la resistenza specifica alla punta "Qc", la densità relativa "DR", l'angolo di attrito "φ", la coesione "Cu" e il modulo edometrico "Ed";
- c) i grafici con le variazioni in funzione della profondità della resistenza alla punta q_c e della resistenza locale f_s , ambedue espresse in Mpa.

2.2 PROVE PENETROMETRICHE DINAMICHE SUPERPESANTI (DPSH)

La prova consiste nella misura della resistenza alla penetrazione di una punta conica di dimensioni standard, infissa per battitura nel terreno, per mezzo di un idoneo dispositivo di percussione.

La strumentazione utilizzata presenta le seguenti caratteristiche tecniche:

JOB:

• PESO MASSA BATTENTE $\mathbf{M} = 63.50 \,\mathrm{Kg}$

• ALTEZZA CADUTA LIBERA $\mathbf{H} = 0.75 \,\mathrm{m}$

• Peso Sistema Battuta Ms = 0.63 Kg

• DIAMETRO PUNTA CONICA \mathbf{D} = 51.00 mm

• AREA BASE PUNTA CONICA $\mathbf{A} = 20.43 \text{ cm}^2$

• Angolo Apertura Punta $\alpha = 60^{\circ}$

• Lunghezza della Aste $L_A = 1.00 \, m$

• PESO ASTE PER METRO MA = 6.31 Kg

• Prof. Giunzione 1^a Asta $P_1 = 0.40 \text{ m}$

• Avanzamento Punta $\delta = 0.20 \, \mathrm{m}$

NUMERO DI COLPI PUNTA N = Relativo ad un avanzamento di 20 cm

RIVESTIMENTO/FANGHISI

FOTO 7: PARTICOLARE PUNTA CONICA

La prova consiste nel computo del numero "N" di colpi di maglio necessari per infiggere nel terreno una batteria di aste terminanti con una punta conica.

Le misure vengono di norma annotate ogni 20 cm, pertanto il relativo numero di colpi va moltiplicato per 1,5 nel caso si vogliano equiparare alle prove SPT classiche. L'esecuzione di prove penetrometriche consente, nota la stratigrafia, di rilevare informazioni valide ai fini della ricostruzione dei profili geotecnici, attraverso l'identificazione di parametri quali: la Densità relativa (Dr) l'Angolo d'attrito (φ) ed il Modulo edometrico (Eed).

Soluzioni Geotecniche s.r.l.

JOB: Revisione 0 del 09/05/2007
Pag. 13 di 13

I certificati delle prove, contenuti in allegato, forniscono:

- d) la tabella valori in cui viene riportata la profondità di infissione "P", il numero di colpi "N" e la resistenza dinamica alla punta "Rpd";
- e) i grafici con le variazioni, in funzione della profondità, della resistenza dinamica alla punta espressa in Kg/cm².

IL Geologo

Nicola Maione

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultu	ıra del Progetto	Cantiere Baia Azzurra (S	Sessa A.)	Indagir Sonda	ne aggi geo	gnostic	i	Son S1	ıdaggi	io			Profondità raggiunta 32,00 m.
Inizio Esecuzior 19/03/2007	ne	Termine Esecuzion 19/03/2007	е	Note1 Perfo	azione e	eseguita	a a sec	ссо					Quota Ass. P.C.
Responsabile Dr. geol. Cav	vallaro Marco	Operatore Sig. Casertano			Tipo Carotaggio Carotaggio continuo				Tipo Sonda PSM 980-G				Coordinate X Y
Scala (mt)	Descrizione	Quota	% Carot. % Carot. % S.D.D. % S.P.T. % S.P.T. % (n° Colpi)	Pocket	(kg/crnq) Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
1	Riporto costituito di materiale eterogeneo terreno sabbioso. Sabbia di colore grigio. Terreno sabbioso-limoso debolmente argilloso humificato, di colore che varia dal marrone chiaro al rosso brunc. Limo sabbioso di colore giallastro molto consistente. Sabbia sciolta giallastra. Sabbia limosa giallastra molto consistente. Sabbia limosa giallastra to consistente. Sabbia limosa giallastra molto consistente. Sabbia presente di colore che varia dal giallino al grigiastro; lo strato presenta un livello maggiormente limoso dai 24,8 m ed i 25,30 m dal p.c	9.80 13.00 14.50	7-11-6.00	PA 2.5	7.50 8.00 kg/cmq		(CS) 32.00	(RM) 	C1 5.0 C2 10. C3 15. C4 20. C5 26.	000			

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere Consor	zio Bonifi	ica (Sessa A.)	Indagine Sondag		gnostici	Sondage S3	gio	Profondità raggiunta 33,50 m.
Inizio Esecuzione 21/03/2007	Termine 22/03/2	Esecuzione 2007		Note1 Perfora	zione e	eseguita a s	ecco		Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operator Sig. Ca	e sertano		Tipo Card		Coordinate X Y			
Litologia Descrizione		Quota	%Carot. %Carot. 8.Q.D. S.P.T. (n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm) Metodo	Metodo Stabiliz. Cass.Catal	Falda Prove Altre prove	Piezometro (P) o Inclinometro (I)
Riporto costida ghiaietto sabbia. Riporto costida ghiaietto sabbia. Riporto costida ghiaietto sabbia. Riporto costida ghiaietto sabbia. Sabbia e sabbia debolmente limosa colore giallo ocrabbondanti framme di gusci di lamellibranchi. Sabbia di colore grigio cenere mol addensata; present frammenti di gusci lamellibranchi. Riporto costida ghiaietto sabbia. Sabbia e sabbia debolmente ilmosa colore grigio cenere mol addensata; present frammenti di gusci lamellibranchi. Riporto costida ghiaietto sabbia debolmente argilioso di consistente; di paleosuolo la me il 18,2 Limo sabbioso debolmente sabidi colore grigi poco consistente. Limo sabbioso debolmente sabidi colore grigi presenza di fra di gusci di lamellibranchi. Sabbia di colore grigi presenza di fra di gusci di lamellibranchi. Limo argilloso debolmente sabbicolore grigio; presenza frammenti di gusci di lamellibranchi. Limo argilloso debolmente sabbicolore grigio; presenza frammenti di gusci di lamellibranchi. Limo argilloso debolmente sabbicolore grigio; presenza frammenti di gusci di lamellibranchi. Limo argilloso debolmente sabbicolore grigio; presenza frammenti di gusci di lamellibranchi. Limo argilloso debolmente sabbicolore grigio; presenza frammenti di gusci di lamellibranchi.	di a con nti i nsata. to za di i di i di colore za di usci chi. bioso o; ee. lloso o; mmenti di ci di	9.40 9.40 20.50 21.40 24.00 31.00	12-16-1 12-16-1 18-37-4 12.00 F	9		(CS)	C1 5. C2 10 C3 15 C4 21 C5 27 C6 C7 C6 C7	4.00 ===================================	

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

Sonda: PSM 980-G

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere Piedimonte di Se	essa A.	Indagine Sondaggi ged	ognostici	Sondaggio S4	Profondità raggiunta 34,50 m.
Inizio Esecuzione 22/03/2007	Termine Esecuzione 23/03/2007		Note1 Perforazione		cco	Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operatore Sig. Casertano		Tipo Carotaggio Carotaggio co	ontinuo	Tipo Sonda PSM 980-G	Coordinate X Y
Litologia Descrizione	Quota	%Carot. %Carot. 8.Q.D. S.P.T. (n° Colpi)	Pocket (kg/cmq) Campioni	Diam. Foro (mm) Metodo Perforaz.	Metodo Stabiliz. Cass.Catal	Altre properties of Inclinometro (I) Properties of Inclinometro (I)
Strato 1: argilla marrone consistente.	4.80		13	0		
Strato 2: argilla limosa debolmente sabbiosa molto consistente di colo marrone con inclusi litoidi calcarei e vulcanici da millimetrici a centimetrici.	ore 7.30		2.7 kg/cmc		C1 6.00	
Strato 3: argilla debolmente limosa di colore marrone molto consistente. Come lo strato 2. Come lo strato 3.	i	12-15-	7		C2 13.00	
Come lo strato 2. 17	18.20		2 kg/cmq		C3 18.50	
20 Signo, marronomo. 21 Sabbia limosa con inclusi litoidi calcarei millimetrici di colore grigio/marroncino. 24 Sabbia fine di colore grigio/marroncino.	23.70				C4 23.50	
25			1.7 kg/cmc	t	C5 28.50	
32 partire dai 34 m dal p.c 34 35 36 37 37 37 37	34.50			(CS) 34.50	(RM) C6 34.50	
Campioni: S-Pareti Sottili O-Osterberg M-Mazi						

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere Carano di Sessa	Α.	Indag	gine daggi geog	gnostici	Sondaggio S5		Profondità raggiunta 32 m.
Inizio Esecuzione 26/03/2007	Termine Esecuzione 27/03/2007		Note1		seguita a se	ecco		Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operatore Sig. Casertano			Carotaggio otaggio cor	ntinuo	Tipo Sonda PSM 980-G		Coordinate X Y
Litologia Descrizione	Quota	%Carot. R.O.D. S.P.T. (n° Colpi)	Pocket	(kg/cmq) Campioni	Diam. Foro (mm) Metodo Perforaz.	Metodo Stabiliz. Cass.Catal	Altre prove	Piezometro (P) o Inclinometro (I)
Riporto antropio debolmente ghiaiosa di colo marrone. Sabbia ghiaiosa debolmente limosa tratti molto addensata e a luoghi litificata con abbondanti pomici e litici vulcanici millimetrici e centimetrici; da 4,5 m a 4.6 presenta un livel di pomici. Il colore complessivi è marronen. Sabbia grossolana con ghiaia di colore marrone. Sabbia grossolana con ghiaia di colore marrone. Sabbia limosa di colore marrone; in alcuni tratti aumenta la componente limosa. Sabbia phiaiosa con ciottoli centimentrici e pomici; colore grigiastro. Sabbia grigiastro. Sabbia phiaiosa con ciottoli centimentrici e pomici millimetriche; il colore è grigiastro. Sabbia ghiaiosa con ciottoli centimentrici e componente limosa. Ghiaia sabbiosa grigiastra con clast millimetrici e centimentrici. Limo sabbioso debolmente argilloso di colore marrone. Limo sabbioso debolmente argilloso di colore marrone.	1.60 re 1.60 8.70 9.50 12.50 re 1.60 8.70 9.50	11-10	-15 PA	6.00 S 6.50	(CS) 32.0	C1 5.00 C2 10.00 C3 15.00 C4 20.00 C5 25.00		

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

Sonda: PSM 980-G

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

_	Dip. di Cultura del Progetto S. Carlo di Sessa A.				Indagine Sondaggi geognostici					Sondaggio S6				Profondità raggiunta 32 m.
Inizio Esecuzion 27/03/2007	ne	Termine Esecu 28/03/2007			Note1 Perfora:	zione (eseguit	ta a se	CCO					Quota Ass. P.C.
Responsabile Dr. geol. Cav	vallaro Marco	Operatore Sig. Caserta	Operatore Sig. Casertano			Tipo Carotaggio Carotaggio continuo				o Son M 98				Coordinate X Y
Ccala (mt) Litologia	Descrizione	Quoi	%Carr R.O.D	S.P.T. (n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
	Lava compatta di colore grigio con fenocristalli. Lava compatta di colore marrone con evidenti fori di degassazione. Ghiaia sabbiosa di colore marrone costituita da materiale lavico co lenti di lava decimetriche; dagli 11 m agli 11,30 m presenta un livello piroclastico sabbio limoso con inclusi lavici. Lava compatta di colore grigio con fenocristalli. Lava compatta di colore marrone con evidenti fori di degassazione.	di di 7.0 9.2 10.	.00	15-20-1 6.00 PA	6		iQ U	(CS)	(RM)	C1 5.C C2 10. C3 15. C4 20. C5 25.	00	NA CONTRACTOR OF THE CONTRACTO	NA MANAGEMENT OF THE PROPERTY	

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Prog	etto	Cantiere Scuola a Sessa A				Indagine Sondaggi geognostici				Son S7	Sondaggio S7				Profondità raggiunta 33m.
Inizio Esecuzione 29/03/2007			Esecuzione			Note1 Perfora:				со					Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Mar	СО	Operatore Sig. Cas				Tipo Carotaggio Carotaggio continuo					Sono M 98				Coordinate X Y
Litologia Descrizione			Quota	%Carot. 8.09 08 09 00 00 00 00 00 00 00 00 00 00 00 00	S.P.T. (n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
Piroclast debolmer inclusi pomici centime colore grigio sabbiose marroncir e pomici e centime sabbiose marroncir e con inclusival con inclu	citi sabbios si litici i millimetric etrici e a rivi. Il grigiastro. patta zzurra.	on e o. ii ii no ii ta	20.00 20.90		8-12-9 2.50 PA 28-RIF 5.00 PA		2.000		(CS) 33.00	(RM)	C1 5.0 C2 10. C3 15. C4 20. C5 25.	00		A A	

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere Corigliano d	di Sessa A		Indagine Sondago	gi geo	gnosti	ci	Sor S8	ıdaggi	io			Profondità raggiunta 32 m.
Inizio Esecuzione 03/04/2007	Termine Esecu 04/04/2007			Note1 Perforaz	zione e	eseguit	ta a se	ссо					Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operatore Sig. Caserta	ano		Tipo Carotaggio Carotaggio continuo					Son M 98				Coordinate X Y
Litologia Descrizione	Quo	eta %Carot.	(n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
Tufite di colore giallo ocra con matrice sabbiosa. Tufite di colore giallo ocra con matrice sabbiosa inclusi pomicei litici. Piroclastiti sabbioso-limose di colore grigio con cristalli e litici millimetrici. Piroclastiti sabbioso-limose di colore grigio con cristalli e litici millimetrici. Piroclastiti sabbioso-limose di colore grigio con cristalli e litici millimetrici. Piroclastiti sabbioso-limose di colore grigio con cristalli e litici millimetrici. Piroclastiti sabbioso-limose di colore grigio con cristalli e litici anche decimetrici. Tufite con matrice sabbiosa di colore grigio con cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici. Piroclastiti sabbioso-limosa marrone ed abbonda cristalli di aspeta alterato (probabil femici) e litici vulcanici centimetrici.	3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	0 20 40 60 80 10 V	-32-38 .00 PF		Can	Diam (mm	(CS) 32.00	(RM)	C1 5.0 C2 10. C3 15. C4 20. C5 25. C6 30. C7 32.	8.00 00 00	Altre	Altre	

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere S. Castrese di Se	Indagine Sondag	gi geo	gnostici		Sondaggio)	Profondità raggiunta 34 m.		
Inizio Esecuzione 04/04/2007	04/04/2007 05/04/2007					a secco				Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operatore Sig. Casertano		Tipo Caro Carotag		ntinuo		Fipo Sond PSM 980			Coordinate X Y
Litologia Descrizione	Quota	%Carot. 8.001 08 09 09 07 00. 001 08 09 09 07 07 00. S.P.T. (n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz. Metodo	Stabiliz. Cass.Catal	Falda 3	Altre prove	Piezometro (P) o Inclinometro (I)
Terreno rimaneggiato. Tufo grigiastro comatrice piroclastica sabbiosa, pomici litici millimetri e centimetrici. N primi 2 m si presenta alterato Piroclastiti sabbiose di colore marrone con pomici e litici millimetrici spars Limo argilloso di colore marrone, poc consistente. Piroclastiti sabbioso-limose di colore marrone con litici vulcanici sparsi. Limo argilloso di colore grigio. Reference Colore grigio. Ghiaia sabbiosa di colore grigio con inclusi litici millimetrici. Piroclastiti sabbiose di colore grigio con inclusi litici millimetrici. Dimo argilloso di colore grigio con colore marrone. Piroclastiti sabbiosa di colore grigio con colore marrone. Piroclastiti sabbiose di colore grigio con inclusi litici millimetrici. Limo argilloso debolmente sabbioso di colore marrone. Piroclastiti sabbiose di colore grigio con inclusi litici millimetrici. Limo argilloso debolmente sabbioso di colore marrone. Lava grigio cenere co fenocristalli. Il primo metro si presenta fortemente alterato Januarice piroclastica sabbiosa grigiastra. Piroclastiti sabbiose debolmente limose di colore marrone.	e di 4.20 e di 7.20 si 8.90 co 10.00 e di 16.90 19.90 23.30 di 25.00 27.00 29.00	30-RIF 3.00 P2	3	10.5	0	(RM 32. CS)	C3 15.0 C4 20.0 C5 26.0	000		

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultur	ra del Progetto	Cantiere Fasani di Sess	а А	Indag Sono		i geo	gnostic	ci	Son S10	idaggi 0	0			Profondità raggiunta 32 m.
Inizio Esecuzione 06/04/2007 Responsabile Dr. geol. Cavallaro Marco		Termine Esecuzione 10/04/2007 Operatore Sig. Casertano			Note1 Perforazione eseguita a secco									Quota Ass. P.C. Coordinate X Y
					Tipo Carotaggio Carotaggio continuo					o Son M 98				
Scala (mt)	Descrizione	Quota	%Carot.	Pocket	(kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
1	Strato 2: piroclastit sabbioso-limose con abbondanti pomici e litici vulcanici millimetrici e centimetrici; presenz di livelli litoidi tufacei; il colore prevalente è il grigi Strato 3: ghiaia sabbiosa grigia co pomici e litici lavici nerastri da millimetrici a centimetrici. Come lo strato 2. Come lo strato 2. Come lo strato 3. Come lo strato 2. Piroclastiti pedogenizzate con tracce vegetali (paleosuolo). Piroclastiti sabbioso-ghiaiose grigiastre con inclusi litici lavic centimetrici e abbondanti pomici millimetricie presenta dei livelli decimetrici litoidi tufacei. Piroclastiti sabbios di colore marrone ce pomici millimetriche	10.50 n 12.30 21.80 23.00 24.40 25.00 ci 29.00 i 32.00	18-1;	3-25 PA		Ca Ca	Dia (m.	(CS) 32.00	(RM) * →	C1 5.0 C2 10. C3 15. C4 20. C5 25.	000 00 20.0 00 00		Altr	

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto Inizio Esecuzione 10/04/2007 Responsabile Dr. geol. Cavallaro Marco		Cantiere Stazione Sessa	Indagine Sondaggi geognostici					idaggi 1	io		Profondità raggiunta 32 m. Quota Ass. P.C.		
		Termine Esecuzion 12/04/2007		Note1 Perforazione eseguita a secco									
		Operatore Sig. Casertano	Tipo Carotaggio Carotaggio continuo					Sono M 98		Coordinate X Y			
Litologia (mt)	Descrizione	Quota	%Carot. %Carot. S.P.T. S.P.T. (n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
	Terreno sabbioso-ghiaioso pedogenizzato di colore marrone scuro	7.00	2-4-5 6.00 P	*					C1 5.0	, XO			
	Sabbia ghiaiosa debolmente limosa di colore grigiatro.				9.00 S 9.50				C2 € 3	00			
									C3 15.	00			
∇	Sabbia limosa di colore grigio. Tufite grigiastra co matrice sabbiosa e di inclusi litici nerastri.								C4 20.	20.0	O		
	Alternanza di sabbie sabbie limose di colore grigio/marroncino.	е							C5 ∻ → 25.	00			
		32.00				i i	(CS) 32.00	(RM) ← → 32.00	C6 * 32.	00			

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

Sonda: PSM 980-G

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultu	ıra del Progetto	Cantiere Rongolisi d	di Sessa	a A		Indagine Sondag		gnosti	ci	Son S12	daggi 2	0			Profondità raggiunta 32 m.
Inizio Esecuzion 14/04/2007	ne	Termine Esec 14/04/200				Note1 Perfora	zione e	eseguit	ta a se	ссо					Quota Ass. P.C.
Responsabile Dr. geol. Ca	vallaro Marco	Operatore Sig. Mirto				Tipo Caro Carota		ntinuo	ı		Sono M 98				Coordinate X Y
Scala (mt)	Descrizione	Que	ota	%Carot. R.Q.D.	S.P.T. (n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
1	Piroclastiti sabbiose di colore marroncino con abbondanti pomici e litici millimetrici e centimetrici. Piroclastiti sabbiose limose di colore marroncino con abbondanti pomici e litici millimetrici e centimetrici. Tufite con matrice sabbiosa marrone prevalentemente sciolta con dei livelli cementati con dimensioni massime decimetriche. Piroclastiti sabbiose grigiastre.	10 4. D	0.20		5-5-6 11.00 P	4	10.5 S	0	(CS) 32.00	(RM) ← →	C1 5.0 C2 10. C3 15. C4 20. C5 25.	00			

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

Sonda: PSM 980-G

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere Aulpi di Sessa /	.	Indagine Sondaggi geo	oanostici	Sondaggio S13	Profondità raggiunta 32 m
Inizio Esecuzione 18/04/2007	Termine Esecuzion 18/04/2007		Note1	eseguita a se		Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operatore Sig. Posabella		Tipo Carotaggio Carotaggio c		Tipo Sonda CMV 420	Coordinate X Y
Litologia Descrizione	Quota	%Carot. R.O.D. S.P.T. (n° Colpi)	Pocket (kg/cmq) Campioni	Diam. Foro (mm) Metodo Perforaz.	Metodo Stabiliz. Cass.Catal epple Refere prove	Piezometro (P) o Inclinometro (I)
Massetto stradale.	0.50	1 1 1 1 1 1			0, 0 4	
Breccia piroclastica grigiastra con abbondanti pomici e inclusi litici scoriacei e lavici millimetrici e decimetrici.	20.00	18-25- 5.00 P	-		C1 5.00 C2 11.00	
Piroclastiti sabbioso limose marroncino con inclusi litici e pomicei. Dai 25 m in giù presenta una leggera pedogenesi. Piroclastiti sabbioso limose marroncino con inclusi litici e pomicei. Piroclastiti sabbioso limose marroncino con inclusi litici e pomicei. 30 31 32 33 34 35 36 37	26.30			(CS) 32.00	C4 26.00 (RM) C5 32.00	

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

Sonda: CMV 420

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultu	ra del Progetto	Cantiere Lauro di Sess	a A.	Indagine Sondaggi ge	eognostici	Sondaggio S14		Profondità raggiunta 32 m
nizio Esecuzion 18/04/2007	ne	Termine Esecuzion 18/04/2007	one	Note1 Perforazione	e eseguita a se	ecco		Quota Ass. P.C.
Responsabile Or. geol. Cav	vallaro Marco	Operatore Sig. Gravina		Tipo Carotaggio Carotaggio		Tipo Sonda ATLAS A32		Coordinate X Y
Litologia	Descrizione	Quota	%Carot. 80 00 00 00 00 00 00 00 00 00 00 00 00	Pocket (kg/cmq) Campioni	Diam. Foro (mm) Metodo Perforaz.	Metodo Stabiliz. Cass. Catal	Altre prove	Piezometro (P) o Inclinometro (I)
	Terreno vegetale.	1.00						
	Piroclastiti sabbiose grigio/marrone con pomici e litici millimetrici e centimetrici. Tufite prevalentement sciolta in matrice sabbiosa marroncino chiaro con livelli cementati centimetrici e decimetrici.	15.0	4-4-5 4.00 P.	3.	50	C1 5.00 C2 11.00 C3 15.00		
	ghiaiose grigiastre. Piroclastiti sabbio		1 1 1 1 1					
7	e sabbioso-limose grigiastre.	26.8 27.5				C5		
	Paleosuolo maturo. Tufite prevalentemen sciolta in matrice sabbioso-ghiaiosa marroncino chiaro co livelli cementati centimetrici e decimetrici.				(CS) *32.0	28.00 (RM)		

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere Cupa di Sessa	ı A.	Indagine Sondag	gi geo	gnostic	i :i	Sono S15	daggio		Profondità raggiunta 32 m
Inizio Esecuzione 19/04/2007	Termine Esecuzion 19/04/2007		Note1 Perfora							Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operatore Sig. Gravina		Tipo Caro	taggio			Tipo	Sonda _AS A32		Coordinate X Y
(£) Litologia Descrizione	Quota	%Carot. %Ca.D. 801 08 09 09 09 00 00 00 00 00 00 00 00 00 00	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Altre prove	Piezometro (P) o Inclinometro (I)
Terreno vegetale rimaneggiato. Terreno vegetale rimaneggiato. Piroclastiti sabbios di colore grigio con pomici biancastre millimetriche e littimillimetriche e littimillimetrici. Piroclastiti limoso-sabbiose marroni; presenza di un paleosuolo tra i m e i 17,5 m e di un paleosuolo tra i i 18 e i 18,4. Turite prevalentement sciolta in matrice sabbiosa grigiastra Terreno vegetale rimaneggiato. Piroclastiti sabbiosa di colore grigio con pomici biancastre millimetriche e centimetrici. Piroclastiti sabbiosa di 17 m e i 17,5 m e di un paleosuolo tra i m e i 17,5 m e di un paleosuolo tra i i 18 e i 18,4. Turite prevalentement sciolta in matrice sabbiosa grigiastra Piroclatiti sabbiosa grigiastra	14.0 14.0 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7-9-10 3.00 F 6.00 F	A 4	16.5 S 17.0	.0	(CS)	(RM)	C1		

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

Controlli - Geognostica - Consolidamenti

Via A. Costa - S. Maria Capua Vetere (CE) - Tel. 0823/589086; Fax: 0823/699800 - E-mail: sogeo@tin.it

Committente Dip. di Cultura del Progetto	Cantiere	di Sessa <i>l</i>	 А.		Indagine Sondag	ai aeo	anostic		Son S10	idaggi 6	io			Profondità raggiunta 32 m
Inizio Esecuzione 19/04/2007		Esecuzione			Note1 Perfora:									Quota Ass. P.C.
Responsabile Dr. geol. Cavallaro Marco	Operator Sig. Gr				Tipo Caro Carotag	taggio			Tipo	Son LAS	da A32			Coordinate X Y
Litologia Descrizione		Quota	%Carot.	S.P.T. (n° Colpi)	Pocket (kg/cmq)	Campioni	Diam. Foro (mm)	Metodo Perforaz.	Metodo Stabiliz.	Cass.Catal	Falda	Altre prove	Altre prove	Piezometro (P) o Inclinometro (I)
Massetto in ceme Massetto in ceme Massetto in ceme piroclastiti sabbioso-limose ocolore marrone ocolore mar	iose mici riche mente e iono	7.00 7.00 23.50 29.00		4-10-8 3.00 PA 8-6-8 8.50 PA		8.00		(CS) 32.00	(RM) ← →	C1 7.0 C2 15. C3 23. C4 29. C5 32.	000			

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT

Piezometro: ATA-Tubo Aperto, CSG-Casagrande
Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua
Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici
Prove SPT: PA-Punta Aperta, PC-Punta Chiusa
Carotaggio: Carotaggio continuo

SPETT.LE DIPARTIMENTO DI CULTURA DEL PROGETTO CRdC BENECON Monastero di San Lorenzo ad Septimum Via S. Lorenzo 81031 Aversa (CE)

OGGETTO: consegna dei lavori di esecuzione di indagini geognostiche per la redazione del P.U.C. del Comune di Sessa Aurunca.
Impresa Appaltatrice: Soluzioni Geotecniche S.R.L.

PROCESSO VERBALE DI CONSTATAZIONE

Il giorno 21 del mese di marzo dell'anno 2007, il sottoscritto dr. geol. Cavallaro Marco in qualità di responsabile di cantiere dell'impresa assuntrice dei lavori in intestazione, ha proceduto alla constatazione delle difficoltà operative emerse per l'esecuzione del sondaggio geognostico a carotaggio continuo denominato S2 in località adiacente a Mass. Le Papere In particolare ha constatato quanto segue:

il proprietario dell'area dove si stava eseguendo il sondaggio non informato correttamente da uno dei sui collaboratori che aveva acconsentito all'esecuzione dello stesso, la mattina del giorno 21/03/07 ha fatto sospendere i lavori rovesciando le cassette catalogatrici delle carote estratte.

Il sondaggio ha comunque raggiunto la profondità di 25 metri ed in corso di perforazione è stato possibile prelevare un campione indisturbato alla profondità di 6.00-6.50 metri ed è stata rèalizzatà una prova SPT alla profondità di 7.50-7.95 metri chè ha prodotto il seguente numero di colpi: 3-2-3.

Da un'analisi visiva e speditiva delle carote rovesciate e dalle indicazioni del sondatore Sig. Casertano Ignazio e dell'operaio Monaco Antonio si è comunque evinto che i terreni prelevati presentavano una prevalente componente coesiva (limi ed argille).

Del che si è redatto il presente verbale che, previa lettura e conferma, viene sottoscritto dagli intervenuti.

Santa Maria C.V., 23.3.07

L'impresa appaltatrice

Il direttore dei lavori Prof. Geol. Giuseppe Luongo

Muery

PROVA PENETROMETRICA DINAMICA

Committente: Dipartimento di Cultura del Progetto

Cantiere: Sessa Aurunca (CE)

Località:

Caratteristiche Tecniche-Strumentali Sonda: DPSH (Dinamic Probing Super Heavy)

Rif. Norme	DIN 4094
Peso Massa battente	63,5 Kg
Altezza di caduta libera	0,75 m
Peso sistema di battuta	8 Kg
Diametro punta conica	50,46 mm
Area di base punta	20 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	6,3 Kg/m
Profondità giunzione prima asta	0,80 m
Avanzamento punta	0,20 m
Numero colpi per punta	N(20)
Coeff. Correlazione	1,504
Rivestimento/fanghi	No
Angolo di apertura punta	90 °

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$Nspt = \beta_t N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M = peso massa battente;

M' = peso aste;

H = altezza di caduta;

A = area base punta conica;

 δ = passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^{2} \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^{2} \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

 $\begin{array}{ll} Rpd &= resistenza \ dinamica \ punta \ (area \ A); \\ e &= infissione \ media \ per \ colpo \ (\delta/\ N); \\ M &= peso \ massa \ battente \ (altezza \ caduta \ H); \\ P &= peso \ totale \ aste \ e \ sistema \ battuta. \end{array}$

PROVA ...DP Nr.1

Strumento utilizzato... DPSH (Dinamic Probing Super Heavy)
Prova eseguita in data 16/04/2007
Profondità prova 2,80 mt

Falda non rilevata

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
	•	riduzione sonda	ridotta	(Kg/cm²)	con riduzione	Herminier -
		Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm²)	
0,20	6	0,855	49,83	58,31	2,49	2,92
0,40	4	0,851	33,07	38,87	1,65	1,94
0,60	2	0,847	16,46	19,44	0,82	0,97
0,80	1	0,843	8,20	9,72	0,41	0,49
1,00	1	0,840	7,55	8,99	0,38	0,45
1,20	1	0,836	7,52	8,99	0,38	0,45
1,40	1	0,833	7,49	8,99	0,37	0,45
1,60	0	0,830	7,49	8,99	0,37	0,45
1,80	0	0,826	7,49	8,99	0,37	0,45
2,00	1	0,823	6,88	8,36	0,34	0,42
2,20	3	0,820	20,58	25,09	1,03	1,25
2,40	1	0,817	6,83	8,36	0,34	0,42
2,60	1	0,814	6,81	8,36	0,34	0,42
2,80	50	0,611	255,68	418,17	12,78	20,91

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.1

TERRENI COESIVI

Coesione non drenata

00001011011011 011 011011				
	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	7,52	0,40	Terzaghi-Peck	0,47
Strato 2	1,64	2,60	Terzaghi-Peck	0,10
Strato 3	75,2	2,80	Terzaghi-Peck	5,08

Modulo Edometrico

iloudio Eucliicuico				
	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato 1	7,52	0,40	Stroud e Butler (1975)	34,50
Strato 2	1,64	2,60	Stroud e Butler (1975)	7,52
Strato 3	75,2	2,80	Stroud e Butler (1975)	345,02

Modulo di Young

120 4420 42 2 04229	Nspt	Prof. Strato (m)	Correlazione	Ey (Kg/cm²)
Strato 1	7,52	0,40	Apollonia	
Strato 2	1,64	2,60	Apollonia	16,40
Strato 3	75,2	2,80	Apollonia	752,00

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	7,52	0,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	1,64	2,60	Classificaz. A.G.I.	PRIVO DI
			(1977)	CONSISTENZA

Strato 3	75,2	2,80	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	7,52	0,40	Meyerhof ed altri	1,88
Strato 2	1,64	2,60	Meyerhof ed altri	1,53
Strato 3	75,2	2,80	Meyerhof ed altri	11,67

Peso unità di volume saturo

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	7,52	0,40	Bowles 1982,	1,90
			Terzaghi-Peck	
			1948/1967	
Strato 2	1,64	2,60	Bowles 1982,	1,85
			Terzaghi-Peck	
			1948/1967	
Strato 3	75,2	2,80	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

TERRENI INCOERENTI

Densità relativa

	Nspt Prof. Strato		Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	7,52	0,40	7,52	Meyerhof 1957	67,05
Strato 2	1,64	2,60	1,64	Meyerhof 1957	27,69
Strato 3	75,2	2,80	75,2	Meyerhof 1957	100

Angolo di resistenza al taglio

Angolo di resistenza ai tagno									
	Nspt Prof. Strato		Nspt corretto per	Correlazione	Angolo d'attrito				
		(m)	presenza falda		(°)				
Strato 1	7,52	0,40	7,52	Meyerhof (1956)	22,15				
Strato 2	1,64	2,60	1,64	Meyerhof (1956)	20,47				
Strato 3	75,2	2,80	75,2	Meyerhof (1956)	41,49				

Modulo di Young

Modulo di Toulig					
Nspt		Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	7,52	0,40	7,52	Schmertmann	60,16
				(1978) (Sabbie)	
Strato 2	1,64	2,60	1,64	Schmertmann	13,12
				(1978) (Sabbie)	
Strato 3	75,2	2,80	75,2	Schmertmann	601,60
				(1978) (Sabbie)	

Modulo Edometrico

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Modulo Edometrico (Kg/cm²)
Strato 1	7,52	0,40	7,52	Begemann 1974 (Ghiaia con sabbia)	42,91
Strato 2	1,64	2,60	1,64	Begemann 1974 (Ghiaia con sabbia)	30,83

Strato 3	75,2	2,80	75,2	Begemann 1974	181,93
				(Ghiaia con	
				sabbia)	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	7,52	0,40	7,52	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 2	1,64	2,60	1,64	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 3	75,2	2,80	75,2	Classificazione	MOLTO
				A.G.I. 1977	ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 1	7,52	0,40	7,52	Meyerhof ed altri	1,64
Strato 2	1,64	2,60	1,64	Meyerhof ed altri	1,38
Strato 3	75,2	2,80	75,2	Meyerhof ed altri	2,50

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato 1	7,52	0,40	7,52	Terzaghi-Peck	1,90
				1948-1967	
Strato 2	1,64	2,60	1,64	Terzaghi-Peck	1,87
				1948-1967	
Strato 3	75,2	2,80	75,2	Terzaghi-Peck	
				1948-1967	

PROVA ...DP Nr.1_1

Strumento utilizzato... Prova eseguita in data Profondità prova 3,00 mt

Falda non rilevata

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20		0,855	49,83	58,31	2,49	2,92
0,40	2	0,851	16,54	19,44	0,83	0,97
0,60	1	0,847	8,23	9,72	0,41	0,49
0,80	1	0,843	8,20	9,72	0,41	0,49
1,00	2	0,840	15,10	17,98	0,75	0,90
1,20	1	0,836	7,52	8,99	0,38	0,45
1,40	1	0,833	7,49	8,99	0,37	0,45
1,60	2	0,830	14,92	17,98	0,75	0,90
1,80	2	0,826	14,86	17,98	0,74	0,90
2,00	1	0,823	6,88	8,36	0,34	0,42
2,20	2	0,820	13,72	16,73	0,69	0,84
2,40	2	0,817	13,67	16,73	0,68	0,84
2,60	1	0,814	6,81	8,36	0,34	0,42
2,80	2	0,811	13,57	16,73	0,68	0,84
3,00	50	0,609	237,95	390,92	11,90	19,55

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.1_1

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato (m)	Correlazione	Cu (Kg/cm²)
Strato 1	2,8	2,80	Terzaghi-Peck	0,18
Strato 2	75,2	3,00	Terzaghi-Peck	5,08

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed				
		(m)		(Kg/cm ²)				
Strato 1	2,8	2,80	Stroud e Butler (1975)	12,85				
Strato 2	75,2	3,00	Stroud e Butler (1975)	345,02				

Modulo di Young

modulo di Toding					
	Nspt	Prof. Strato	Correlazione	Ey	
		(m)		(Kg/cm ²)	
Strato 1	2,8	2,80	Apollonia	28,00	
Strato 2	75.2	3.00	Apollonia	752,00	

Classificazione AGI

	Nspt	Prof. Strato (m)	Correlazione	Classificazione
Strato 1	2,8	2,80	Classificaz. A.G.I.	POCO
			(1977)	CONSISTENTE

Strato 2	75,2	3,00	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	2,8	2,80	Meyerhof ed altri	1,62
Strato 2	75,2	3,00	Meyerhof ed altri	11,67

Peso unità di volume saturo

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	2,8	2,80	Bowles 1982,	1,86
			Terzaghi-Peck	
			1948/1967	
Strato 2	75,2	3,00	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Densità relativa (%)
Strato 1	2,8	2,80	2,8	Meyerhof 1957	36,5
Strato 2	75,2	3,00	75,2	Meyerhof 1957	100

Angolo di resistenza al taglio

angolo di resistenza di dagno								
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito			
		(m)	presenza falda		(°)			
Strato 1	2,8	2,80	2,8	Meyerhof (1956)	20,8			
Strato 2	75,2	3,00	75,2	Meyerhof (1956)	41,49			

Modulo di Young

-	Touris at Louing					
		Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
			(m)	presenza falda		(Kg/cm ²)
Ī	Strato 1	2,8	2,80	2,8	Schmertmann	22,40
					(1978) (Sabbie)	
Ī	Strato 2	75,2	3,00	75,2	Schmertmann	601,60
					(1978) (Sabbie)	

Modulo Edometrico

Modulo Edollietric	20				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo
		(m)	presenza falda		Edometrico
					(Kg/cm²)
Strato 1	2,8	2,80	2,8	Begemann 1974	33,22
				(Ghiaia con	
				sabbia)	
Strato 2	75,2	3,00	75,2	Begemann 1974	181,93
				(Ghiaia con	
				sabbia)	

Classificazione AGI

Classificazione il G	-				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	2,8	2,80	2,8	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 2	75,2	3,00	75,2	Classificazione	MOLTO
				A.G.I. 1977	ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma (t/m³)
Strato 1	2,8	2,80	2,8	Meyerhof ed altri	1,44
Strato 2	75,2	3,00	75,2	Meyerhof ed altri	2,50

t eso unita ui volume satui o									
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo				
		(m)	presenza falda		(t/m^3)				
Strato 1	2,8	2,80	2,8	Terzaghi-Peck	1,87				
				1948-1967					
Strato 2	75,2	3,00	75,2	Terzaghi-Peck					
				1948-1967					

Falda rilevata

PROVA ...DP Nr.2

Strumento utilizzato... DPSH (Dinamic Probing Super Heavy)
Prova eseguita in data 17/04/2007
Profondità prova 20,00 mt

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
, ,	•	riduzione sonda	ridotta	(Kg/cm ²)	ammissibile con	ammissibile
		Chi	(Kg/cm²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm²)	
0,20	3	0,855	24,92	29,15	1,25	1,46
0,40	5	0,851	41,34	48,59	2,07	2,43
0,60	8	0,847	65,85	77,74	3,29	3,89
0,80	10	0,843	81,95	97,18	4,10	4,86
1,00	9	0,840	67,94	80,91	3,40	4,05
1,20	8	0,836	60,14	71,92	3,01	3,60
1,40 1,60	6 11	0,833 0,830	44,92 82,03	53,94 98,89	2,25 4,10	2,70 4,94
1,80	11	0,830	81,71	98,89	4,10	4,94
2,00	11	0,828	82,61	100,36	4,13	5,02
2,20	12	0,823	82,31	100,36	4,12	5,02
2,40	12	0,820	82,01	100,36	4,10	5,02
2,60	11	0,817	74,91	92,00	3,75	4,60
2,80	13	0,761	82,78	108,72	4,14	5,44
3,00	13	0,759	77,11	101,64	3,86	5,08
3,20	15	0,756	88,66	117,28	4,43	5,86
3,40	18	0,753	106,03	140,73	5,30	7,04
3,60	22	0,701	120,55	172,01	6,03	8,60
3,80	22	0,698	120,13	172,01	6,01	8,60
4,00	23	0,696	117,51	168,83	5,88	8,44
4,20	20	0,744	109,18	146,81	5,46	7,34
4,40	21	0,691	106,58	154,15	5,33	7,71
4,60	22	0,689	111,30	161,49	5,57	8,07
4,80	22	0,687	110,96	161,49	5,55	8,07
5,00	20	0,735	101,69	138,34	5,08	6,92
5,20	13	0,733	65,91	89,92	3,30	4,50
5,40	9	0,781	48,62	62,25	2,43	3,11
5,60	8	0,779	43,12	55,34	2,16	2,77
5,80	9	0,777	48,39	62,25	2,42	3,11
6,00	10	0,775	50,72	65,40	2,54	3,27
6,20	7	0,774	35,42	45,78	1,77	2,29
6,40	8	0,772	40,39	52,32	2,02	2,62
6,60 6,80	8	0,770 0,769	40,31 40,22	52,32 52,32	2,02 2,01	2,62 2,62
7,00	9	0,767	42,82	55,82	2,14	2,79
7,00	8	0,766	37,99	49,62	1,90	2,48
7,40	7	0,764	33,18	43,42	1,66	2,17
7,60	6	0,763	28,38	37,21	1,42	1,86
7,80	6	0,761	28,33	37,21	1,42	1,86
8,00	4	0,760	17,93	23,59	0,90	1,18
8,20	7	0,759	31,31	41,28	1,57	2,06
8,40	8	0,757	35,73	47,18	1,79	2,36
8,60	8	0,756	35,67	47,18	1,78	2,36
8,80	10	0,755	44,51	58,97	2,23	2,95

9,00	11	0,753	46,59	61,83	2,33	3,09
9,20	13	0,702	51,32	73,08	2,57	3,65
9,40	12	0,751	50,67	67,45	2,53	3,37
9,60		0,700	51,15	73,08	2,56	3,65
9,80		0,699	51,07	73,08	2,55	3,65
10,00		0,698	59,94	85,91	3,00	4,30
10,20		0,697	63,59	91,28	3,18	4,56
10,40		0,746	40,03	53,70	2,00	2,68
10,60		0,744	43,97	59,07	2,20	2,95
10,80		0,693	52,13	75,18	2,61	3,76
11,00		0,692	60,49	87,37	3,02	4,37
11,20		0,691	46,19	66,82	2,31	3,34
11,40		0,740	22,83	30,84	1,14	1,54
11,60		0,739	19,00	25,70	0,95	1,28
11,80		0,738	15,18	20,56	0,76	1,03
12,00		0,737	18,17	24,64	0,91	1,23
12,20		0,736	18,14	24,64	0,91	1,23
12,40		0,735	21,74	29,57	1,09	1,48
12,60		0,734	25,33	34,50	1,27	1,73
12,80		0,733	25,29	34,50	1,26	1,73
13,00		0,732	31,19	42,61	1,56	2,13
13,20		0,731	24,23	33,14	1,21	1,66
13,40		0,730	27,65	37,87	1,38	1,89
13,60		0,729	27,61	37,87	1,38	1,89
13,80		0,728	20,68	28,41	1,03	1,42
14,00		0,727	23,17	31,88	1,16	1,59
14,20		0,726	19,83	27,33	0,99	1,37
14,40		0,725	23,10	31,88	1,16	1,59
14,60		0,723	26,36	36,44	1,32	1,82
14,80		0,722	26,32	36,44	1,32	1,82
15,00		0,721	25,31	35,10	1,27	1,76
15,20		0,720	25,27	35,10	1,26	1,76
15,40		0,719	25,23	35,10	1,26	1,76
15,60		0,717	28,33	39,49	1,42	1,97
15,80		0,716	22,00	30,72	1,10	1,54
16,00		0,715	27,24	38,10	1,36	1,90
16,20		0,714	27,18	38,10	1,36	1,90
16,40		0,712	30,15	42,33	1,51	2,12
16,60		0,711	33,10	46,57	1,65	2,33
16,80		0,709	33,03	46,57	1,65	2,33
17,00		0,708	34,73	49,07	1,74	2,45
17,20		0,656	34,89	53,16	1,74	2,66
17,40		0,655	34,80	53,16	1,74	2,66
17,60		0,703	31,62	44,98	1,58	2,25
17,80		0,701	28,68	40,89	1,43	2,04
18,00		0,700	27,67	39,54	1,38	1,98
18,20		0,698	24,84	35,59	1,24	1,78
18,40		0,696	24,78	35,59	1,24	1,78
18,60		0,694	27,46	39,54	1,37	1,98
18,80		0,692	27,38	39,54	1,37	1,98
19,00		0,691	29,08	42,11	1,45	2,11
19,20		0,688	31,63	45,94	1,58	2,30
19,40		0,686	31,53	45,94	1,58	2,30
19,60		0,634	31,57	49,77	1,58	2,49
19,80		0,632	31,46	49,77	1,57	2,49
20,00		0,630	30,38	48,23	1,52	2,41

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.2

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	21	5,00	Terzaghi-Peck	1,42
Strato 2	12,03	8,00	Terzaghi-Peck	0,81
Strato 3	18,05	11,00	Terzaghi-Peck	1,22
Strato 4	10,78	15,80	Terzaghi-Peck	0,73
Strato 5	16,54	20,00	Terzaghi-Peck	1,12

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato 1	21	5,00	Stroud e Butler (1975)	96,35
Strato 2	12,03	8,00	Stroud e Butler (1975)	55,19
Strato 3	18,05	11,00	Stroud e Butler (1975)	82,81
Strato 4	10,78	15,80	Stroud e Butler (1975)	49,46
Strato 5	16,54	20,00	Stroud e Butler (1975)	75,89

Modulo di Young

middaio di Todiig				
	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato 1	21	5,00	Apollonia	210,00
Strato 2	12,03	8,00	Apollonia	120,30
Strato 3	18,05	11,00	Apollonia	180,50
Strato 4	10,78	15,80	Apollonia	107,80
Strato 5	16,54	20,00	Apollonia	165,40

Classificazione AGI

Classificazione AGI				
	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	21	5,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 2	12,03	8,00	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 3	18,05	11,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 4	10,78	15,80	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 5	16,54	20,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	21	5,00	Meyerhof ed altri	2,10
Strato 2	12,03	8,00	Meyerhof ed altri	2,02
Strato 3	18,05	11,00	Meyerhof ed altri	2,09
Strato 4	10,78	15,80	Meyerhof ed altri	1,99
Strato 5	16,54	20,00	Meyerhof ed altri	2,08

i eso unita di volune saturo									
	Nspt	Prof. Strato	Correlazione	Peso unità di volume					
		(m)		saturo					
				(t/m^3)					
Strato 1	21	5,00	Bowles 1982,	2,12					
			Terzaghi-Peck						

1948/1967			
 Bowles 1982,	8,00	12,03	Strato 2
Terzaghi-Peck			
1948/1967			
 Bowles 1982,	11,00	18,05	Strato 3
Terzaghi-Peck			
1948/1967			
 Bowles 1982,	15,80	10,78	Strato 4
Terzaghi-Peck			
1948/1967			
 Bowles 1982,	20,00	16,54	Strato 5
Terzaghi-Peck			
1948/1967			

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	21	5,00	21	Meyerhof 1957	86,95
Strato 2	12,03	8,00	12,03	Meyerhof 1957	50,83
Strato 3	18,05	11,00	18,05	Meyerhof 1957	54,61
Strato 4	10,78	15,80	10,78	Meyerhof 1957	39,03
Strato 5	16,54	20,00	15,77	Meyerhof 1957	44,04

Angolo di resistenza al taglio

 ingolo al l'esisteme	200 UL UUS 220				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	21	5,00	21	Meyerhof (1956)	26
Strato 2	12,03	8,00	12,03	Meyerhof (1956)	23,44
Strato 3	18,05	11,00	18,05	Meyerhof (1956)	25,16
Strato 4	10,78	15,80	10,78	Meyerhof (1956)	23,08
Strato 5	16,54	20,00	15,77	Meyerhof (1956)	24,51

Modulo di Young

2	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	21	5,00	21	Schmertmann	168,00
				(1978) (Sabbie)	
Strato 2	12,03	8,00	12,03	Schmertmann	96,24
				(1978) (Sabbie)	
Strato 3	18,05	11,00	18,05	Schmertmann	144,40
				(1978) (Sabbie)	
Strato 4	10,78	15,80	10,78	Schmertmann	86,24
				(1978) (Sabbie)	
Strato 5	16,54	20,00	15,77	Schmertmann	126,16
				(1978) (Sabbie)	

Modulo Edometrico

Modulo Edometrio	:0				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo
		(m)	presenza falda		Edometrico
					(Kg/cm ²)
Strato 1	21	5,00	21	Begemann 1974	70,60
				(Ghiaia con	
				sabbia)	
Strato 2	12,03	8,00	12,03	Begemann 1974	52,17
				(Ghiaia con	
				sabbia)	
Strato 3	18,05	11,00	18,05	Begemann 1974	64,54
				(Ghiaia con	

	sabbia)				
49,61	Begemann 1974	10,78	15,80	10,78	Strato 4
	(Ghiaia con				
	sabbia)				
59,86	Begemann 1974	15,77	20,00	16,54	Strato 5
	(Ghiaia con				
	sabbia)				

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	21	5,00	21	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 2	12,03	8,00	12,03	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 3	18,05	11,00	18,05	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 4	10,78	15,80	10,78	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 5	16,54	20,00	15,77	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 1	21	5,00	21	Meyerhof ed altri	2,01
Strato 2	12,03	8,00	12,03	Meyerhof ed altri	1,80
Strato 3	18,05	11,00	18,05	Meyerhof ed altri	1,95
Strato 4	10,78	15,80	10,78	Meyerhof ed altri	1,76
Strato 5	16,54	20,00	15,77	Meyerhof ed altri	1,90

r coo annea ar voidh	t eso unita di volune saturo							
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo			
		(m)	presenza falda		(t/m^3)			
Strato 1	21	5,00	21	Terzaghi-Peck				
				1948-1967				
Strato 2	12,03	8,00	12,03	Terzaghi-Peck	1,93			
				1948-1967				
Strato 3	18,05	11,00	18,05	Terzaghi-Peck	1,97			
				1948-1967				
Strato 4	10,78	15,80	10,78	Terzaghi-Peck	1,92			
				1948-1967				
Strato 5	16,54	20,00	15,77	Terzaghi-Peck	1,95			
	·			1948-1967				

PROVA ...DP Nr.3

Strumento utilizzato... DPSH (Dinamic Probing Super Heavy)
Prova eseguita in data
Profondità prova 20,00 mt
Falda rilevata

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
		Chi	(Kg/cm ²)	, ,	riduzione	Herminier -
			, , ,		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0,20	2	0,855	16,61	19,44		0,97
0,40	3	0,851	24,80	,		1,46
0,60	3	0,847	24,69		,	1,46
0,80	3	0,843	24,59			1,46
1,00	4	0,840	30,20			1,80
1,20 1,40	4	0,836 0,833	30,07 29,95			1,80
1,40	5	0,830	37,29			1,80 2,25
1,80	3	0,836	22,29			1,35
2,00	3	0,823	20,65			1,25
2,20	4	0,820	27,44			1,67
2,40	5	0,817	34,17	41,82		2,09
2,60	3	0,814	20,43	25,09		1,25
2,80	4	0,811	27,14			1,67
3,00	5	0,809	31,61	39,09		1,95
3,20	5	0,806	31,51	39,09		1,95
3,40	5	0,803	31,41	39,09	1,57	1,95
3,60	6	0,801	37,57	46,91	1,88	2,35
3,80	5	0,798	31,21	39,09		1,95
4,00	7	0,796	40,90			2,57
4,20	6	0,794	34,96		,	2,20
4,40	6	0,791	34,86			2,20
4,60	5	0,789	28,97	36,70		1,84
4,80	3	0,787	17,33		0,87	1,10
5,00	1	0,785	5,43		0,27	0,35
5,20	8	0,783	43,33	,		2,77
5,40	9	0,781	48,62			3,11
5,60 5,80	6	0,779 0,777	48,50 32,26		2,43 1,61	3,11 2,08
6,00	2	0,777	10,14	·		0,65
6,20	10	0,774	50,60			3,27
6,40	12	0,772	60,59	,		3,92
6,60	10	0,770	50,38	65,40		3,27
6,80	11	0,769	55,31	71,94		3,60
7,00	7	0,767	33,31	43,42	1,67	2,17
7,20	11	0,766	52,24		2,61	3,41
7,40	10	0,764	47,39	62,02	2,37	3,10
7,60	9	0,763	42,57	55,82	2,13	2,79
7,80	7	0,761	33,05	43,42	1,65	2,17
8,00	8	0,760	35,85	47,18	1,79	2,36
8,20	8	0,759	35,79	47,18	1,79	2,36
8,40	9	0,757	40,19			2,65
8,60	10	0,756	44,58			2,95
8,80	5	0,755	22,25	29,49	1,11	1,47

9,00	12	0,753	50,83	67,45	2,54	3,37
9,20	9	0,752	38,06	50,59	1,90	2,53
9,40	4	0,751	16,89	22,48	0,84	1,12
9,60		0,750	12,65	16,86	0,63	0,84
9,80		0,749	12,63	16,86	0,63	0,84
10,00		0,748	12,04	16,11	0,60	0,81
10,20		0,747	12,03	16,11	0,60	0,81
10,40		0,746	12,01	16,11	0,60	0,81
10,60		0,744	15,99	21,48	0,80	1,07
10,80		0,743	19,96	26,85	1,00	1,34
11,00		0,742	15,26	20,56	0,76	1,03
11,20		0,741	19,05	25,70	0,95	1,28
11,40		0,740	19,02	25,70	0,95	1,28
11,60		0,739	22,80	30,84	1,14	1,54
11,80		0,738	22,77	30,84	1,14	1,54
12,00		0,737	21,80	29,57	1,09	1,48
12,00		0,737	21,77	29,57	1,09	1,48
12,40		0,735	25,36	34,50	1,09	1,73
12,40		0,734		29,57	1,09	1,73
			21,71			1,48
12,80 13,00		0,733	28,91 24,26	39,43	1,45	
		0,732		33,14	1,21	1,66
13,20		0,731	27,69	37,87	1,38	1,89
13,40		0,730	24,19	33,14	1,21	1,66
13,60		0,729	31,06	42,61	1,55	2,13
13,80		0,728	27,57	37,87	1,38	1,89
14,00		0,727	29,79	40,99	1,49	2,05
14,20		0,726	29,75	40,99	1,49	2,05
14,40		0,725	29,70	40,99	1,49	2,05
14,60		0,723	32,95	45,54	1,65	2,28
14,80		0,722	32,90	45,54	1,64	2,28
15,00		0,721	34,81	48,27	1,74	2,41
15,20		0,720	34,75	48,27	1,74	2,41
15,40		0,719	31,54	43,88	1,58	2,19
15,60		0,717	31,48	43,88	1,57	2,19
15,80		0,716	28,28	39,49	1,41	1,97
16,00		0,715	27,24	38,10	1,36	1,90
16,20		0,714	27,18	38,10	1,36	1,90
16,40		0,712	30,15	42,33	1,51	2,12
16,60		0,711	33,10	46,57	1,65	2,33
16,80		0,709	36,03	50,80	1,80	2,54
17,00		0,658	40,35	61,33	2,02	3,07
17,20		0,656	34,89	53,16	1,74	2,66
17,40		0,655	37,48	57,25	1,87	2,86
17,60		0,653	40,06	61,33	2,00	3,07
17,80		0,701	34,42	49,07	1,72	2,45
18,00		0,700	33,20	47,45	1,66	2,37
18,20		0,698	33,12	47,45	1,66	2,37
18,40		0,646	33,22	51,40	1,66	2,57
18,60		0,644	35,67	55,36	1,78	2,77
18,80		0,642	35,57	55,36	1,78	2,77
19,00		0,641	36,78	57,42	1,84	2,87
19,20	16	0,638	39,11	61,25	1,96	3,06
19,40		0,636	41,42	65,08	2,07	3,25
19,60		0,634	36,42	57,42	1,82	2,87
19,80		0,632	38,72	61,25	1,94	3,06
20,00		0,630	37,38	59,36	1,87	2,97
==,00	10	-,	2 . ,20	,50	-,07	-,,,,

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.3

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato 1	6,54	4,60	Terzaghi-Peck	0,41
Strato 2	3,01	5,00	Terzaghi-Peck	0,19
Strato 3	12,03	5,80	Terzaghi-Peck	0,81
Strato 4	3,01	6,00	Terzaghi-Peck	0,19
Strato 5	13,91	9,20	Terzaghi-Peck	0,94
Strato 6	4,77	10,40	Terzaghi-Peck	0,30
Strato 7	8,68	13,00	Terzaghi-Peck	0,59
Strato 8	17,61	20,00	Terzaghi-Peck	1,19

Modulo Edometrico

Modulo Edollicarico				
	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato 1	6,54	4,60	Stroud e Butler (1975)	30,01
Strato 2	3,01	5,00	Stroud e Butler (1975)	13,81
Strato 3	12,03	5,80	Stroud e Butler (1975)	55,19
Strato 4	3,01	6,00	Stroud e Butler (1975)	13,81
Strato 5	13,91	9,20	Stroud e Butler (1975)	63,82
Strato 6	4,77	10,40	Stroud e Butler (1975)	21,89
Strato 7	8,68	13,00	Stroud e Butler (1975)	39,82
Strato 8	17,61	20,00	Stroud e Butler (1975)	80,80

Modulo di Young

Modulo al Toulig				
	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	6,54	4,60	Apollonia	65,40
Strato 2	3,01	5,00	Apollonia	30,10
Strato 3	12,03	5,80	Apollonia	120,30
Strato 4	3,01	6,00	Apollonia	30,10
Strato 5	13,91	9,20	Apollonia	139,10
Strato 6	4,77	10,40	Apollonia	47,70
Strato 7	8,68	13,00	Apollonia	86,80
Strato 8	17,61	20,00	Apollonia	176,10

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
	-	(m)		
Strato 1	6,54	4,60	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	3,01	5,00	Classificaz. A.G.I.	POCO
			(1977)	CONSISTENTE
Strato 3	12,03	5,80	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 4	3,01	6,00	Classificaz. A.G.I.	POCO
			(1977)	CONSISTENTE
Strato 5	13,91	9,20	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 6	4,77	10,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 7	8,68	13,00	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 8	17,61	20,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE

Peso unità di volume

1 Coo unitu ui voiunic				
	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	6,54	4,60	Meyerhof ed altri	1,84
Strato 2	3,01	5,00	Meyerhof ed altri	1,64
Strato 3	12,03	5,80	Meyerhof ed altri	2,02
Strato 4	3,01	6,00	Meyerhof ed altri	1,64
Strato 5	13,91	9,20	Meyerhof ed altri	2,05
Strato 6	4,77	10,40	Meyerhof ed altri	1,75
Strato 7	8,68	13,00	Meyerhof ed altri	1,93
Strato 8	17,61	20,00	Meyerhof ed altri	2,09

Peso unità di volume saturo

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo (t/m³)
Strato 1	6,54	4,60	Bowles 1982,	1,89
			Terzaghi-Peck 1948/1967	
Strato 2	3,01	5,00	Bowles 1982,	1,86
			Terzaghi-Peck	
			1948/1967	
Strato 3	12,03	5,80	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 4	3,01	6,00	Bowles 1982,	1,86
			Terzaghi-Peck	
			1948/1967	
Strato 5	13,91	9,20	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 6	4,77	10,40	Bowles 1982,	1,88
			Terzaghi-Peck	
			1948/1967	
Strato 7	8,68	13,00	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 8	17,61	20,00	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

TERRENI INCOERENTI

Densità relativa

Densita i ciativa	Chista i Cata va								
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa				
		(m)	presenza falda		(%)				
Strato 1	6,54	4,60	6,54	Meyerhof 1957	50,67				
Strato 2	3,01	5,00	3,01	Meyerhof 1957	29,76				
Strato 3	12,03	5,80	12,03	Meyerhof 1957	58,45				
Strato 4	3,01	6,00	3,01	Meyerhof 1957	28,8				
Strato 5	13,91	9,20	13,91	Meyerhof 1957	58,8				
Strato 6	4,77	10,40	4,77	Meyerhof 1957	32,53				
Strato 7	8,68	13,00	8,68	Meyerhof 1957	42,16				
Strato 8	17,61	20,00	16,305	Meyerhof 1957	52,03				

Angolo di resistenza al taglio

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Angolo d'attrito (°)
Strato 1	6,54	4,60	6,54	Meyerhof (1956)	21,87

Strato 2	3,01	5,00	3,01	Meyerhof (1956)	20,86
Strato 3	12,03	5,80	12,03	Meyerhof (1956)	23,44
Strato 4	3,01	6,00	3,01	Meyerhof (1956)	20,86
Strato 5	13,91	9,20	13,91	Meyerhof (1956)	23,97
Strato 6	4,77	10,40	4,77	Meyerhof (1956)	21,36
Strato 7	8,68	13,00	8,68	Meyerhof (1956)	22,48
Strato 8	17,61	20,00	16,305	Meyerhof (1956)	24,66

Modulo di Young

Modulo di Toulig					
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	6,54	4,60	6,54	Schmertmann	52,32
				(1978) (Sabbie)	
Strato 2	3,01	5,00	3,01	Schmertmann	24,08
				(1978) (Sabbie)	
Strato 3	12,03	5,80	12,03	Schmertmann	96,24
				(1978) (Sabbie)	
Strato 4	3,01	6,00	3,01	Schmertmann	24,08
				(1978) (Sabbie)	
Strato 5	13,91	9,20	13,91	Schmertmann	111,28
				(1978) (Sabbie)	
Strato 6	4,77	10,40	4,77	Schmertmann	38,16
				(1978) (Sabbie)	
Strato 7	8,68	13,00	8,68	Schmertmann	69,44
				(1978) (Sabbie)	
Strato 8	17,61	20,00	16,305	Schmertmann	130,44
				(1978) (Sabbie)	

Modulo Edometrico

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Modulo Edometrico (Kg/cm²)
Strato 1	6,54	4,60	,	Begemann 1974 (Ghiaia con sabbia)	40,90
Strato 2	3,01	5,00	3,01	Begemann 1974 (Ghiaia con sabbia)	33,65
Strato 3	12,03	5,80	12,03	Begemann 1974 (Ghiaia con sabbia)	52,17
Strato 4	3,01	6,00	3,01	Begemann 1974 (Ghiaia con sabbia)	33,65
Strato 5	13,91	9,20	13,91	Begemann 1974 (Ghiaia con sabbia)	56,04
Strato 6	4,77	10,40	4,77	Begemann 1974 (Ghiaia con sabbia)	37,26
Strato 7	8,68	13,00	8,68	Begemann 1974 (Ghiaia con sabbia)	45,29
Strato 8	17,61	20,00	16,305	Begemann 1974 (Ghiaia con sabbia)	60,96

Classificazione AGI

	3.7	D C C	* * ·	a 1 .	C1 1.01 1
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
	rispi	Tion, bilato	143pt confetto per	Correlazione	Classificazione

		(m)	presenza falda		AGI
Strato 1	6,54	4,60	6,54	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 2	3,01	5,00	3,01	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 3	12,03	5,80	12,03	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 4	3,01	6,00	3,01	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 5	13,91	9,20	13,91	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 6	4,77	10,40	4,77	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 7	8,68	13,00	8,68	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 8	17,61	20,00	16,305	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma (t/m³)
Strato 1	6,54	()	*	Meyerhof ed altri	` '
Strato 2	3,01	5,00	3,01	Meyerhof ed altri	1,45
Strato 3	12,03	5,80	12,03	Meyerhof ed altri	1,80
Strato 4	3,01	6,00	3,01	Meyerhof ed altri	1,45
Strato 5	13,91	9,20	13,91	Meyerhof ed altri	1,85
Strato 6	4,77	10,40	4,77	Meyerhof ed altri	1,53
Strato 7	8,68	13,00	8,68	Meyerhof ed altri	1,68
Strato 8	17,61	20,00	16,305	Meyerhof ed altri	1,91

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma Saturo (t/m³)
Strato 1	6,54	4,60	6,54	Terzaghi-Peck 1948-1967	1,90
Strato 2	3,01	5,00	3,01	Terzaghi-Peck 1948-1967	1,87
Strato 3	12,03	5,80	12,03	Terzaghi-Peck 1948-1967	1,93
Strato 4	3,01	6,00	3,01	Terzaghi-Peck 1948-1967	1,87
Strato 5	13,91	9,20	13,91	Terzaghi-Peck 1948-1967	1,94
Strato 6	4,77	10,40	4,77	Terzaghi-Peck 1948-1967	1,89
Strato 7	8,68	13,00	8,68	Terzaghi-Peck 1948-1967	1,91
Strato 8	17,61	20,00	16,305	Terzaghi-Peck 1948-1967	1,96

PROVA ...DP Nr.4

Strumento utilizzato... Prova eseguita in data Profondità prova 27/04/2007
Pralda rilevata DPSH (Dinamic Probing Super Heavy)
27/04/2007
20,00 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	2	0,855	16,61	19,44	0,83	0,97
0,40	4	0,851	33,07	38,87	1,65	1,94
0,60	4	0,847	32,92	38,87	1,65	1,94
0,80	7	0,843	57,37	68,02	2,87	3,40
1,00	4	0,840	30,20	35,96	1,51	1,80
1,20	3	0,836	22,55	26,97	1,13	1,35
1,40	1	0,833	7,49	8,99	0,37	0,45
1,60	3	0,830	22,37	26,97	1,12	1,35
1,80	2	0,826	14,86	17,98	0,74	0,90
2,00	1	0,823	6,88	8,36	0,34	0,42
2,20	2	0,820	13,72	16,73	0,69	0,84
2,40	1	0,817	6,83	8,36	0,34	0,42
2,60	2	0,814	13,62	16,73	0,68	0,84
2,80	2	0,811	13,57	16,73	0,68	0,84
3,00	2	0,809	12,65	15,64	0,63	0,78
3,20	1	0,806	6,30	7,82	0,32	0,39
3,40	1	0,803	6,28	7,82	0,31	0,39
3,60	2	0,801	12,52	15,64	0,63	0,78
3,80	1	0,798	6,24	7,82	0,31	0,39
4,00	2	0,796	11,69	14,68	0,58	0,73
4,20	2	0,794	11,65	14,68	0,58	0,73
4,40	1	0,791	5,81	7,34	0,29	0,37
4,60	2	0,789	11,59	14,68	0,58	0,73
4,80	1	0,787	5,78	7,34	0,29	0,37
5,00	3	0,785	16,29	20,75	0,81	1,04
5,20	2	0,783	10,83	13,83	0,54	0,69
5,40	2	0,781	10,81	13,83	0,54	0,69
5,60	2	0,779	10,78	13,83	0,54	0,69
5,80	3	0,777	16,13	20,75	0,81	1,04
6,00	4	0,775	20,29	26,16	1,01	1,31
6,20	3	0,774	15,18	19,62	0,76	0,98
6,40	5	0,772	25,25	32,70	1,26	1,64
6,60	4	0,770	20,15	26,16	1,01	1,31
6,80	4	0,769	20,11	26,16	1,01	1,31
7,00	5	0,767	23,79	31,01	1,19	1,55
7,20	5	0,766	23,74		1,19	1,55
7,40	5	0,764	23,70		1,18	1,55
7,60	6	0,763	28,38	37,21	1,42	1,86
7,80	6	0,761	28,33	37,21	1,42	1,86
8,00	5	0,760	22,41	29,49	1,12	1,47
8,20	6	0,759	26,84	35,38	1,34	1,77
8,40	6	0,757	26,79	35,38	1,34	1,77
8,60	6	0,756	26,75	35,38	1,34	1,77
8,80	7	0,755	31,16	41,28	1,56	2,06

9,00	7	0,753	29,65	39,35	1,48	1,97
9,20	6	0,752	25,37	33,73	1,27	1,69
9,40	6	0,751	25,33	33,73	1,27	1,69
9,60	7	0,750	29,51	39,35	1,48	1,97
9,80	7	0,749	29,46	39,35	1,47	1,97
10,00	7	0,748	28,10	37,59	1,41	1,88
10,20	7	0,747	28,06	37,59	1,40	1,88
10,40	6	0,746	24,02	32,22	1,20	1,61
10,60	7	0,744	27,98	37,59	1,40	1,88
10,80	7	0,743	27,94	37,59	1,40	1,88
11,00	7	0,742	26,71	35,98	1,34	1,80
11,20	7	0,741	26,67	35,98	1,33	1,80
11,40	8	0,740	30,44	41,12	1,52	2,06
11,60	7	0,739	26,60	35,98	1,33	1,80
11,80	8	0,738	30,35	41,12	1,52	2,06
12,00	8	0,737	29,07	39,43	1,45	1,97
12,20	8	0,736	29,03	39,43	1,45	1,97
12,40	8	0,735	28,99	39,43	1,45	1,97
12,60	9	0,734	32,57	44,36	1,63	2,22
12,80	10	0,733	36,13	49,29	1,81	2,46
13,00	10	0,732	34,66	47,34	1,73	2,37
13,20	10	0,731	34,61	47,34	1,73	2,37
13,40	9	0,730	31,10	42,61	1,56	2,13
13,60	10	0,729	34,51	47,34	1,73	2,37
13,80	10	0,728	34,46	47,34	1,72	2,37
14,00	10	0,727	33,10	45,54	1,66	2,28
14,20	10	0,726	33,05	45,54	1,65	2,28
14,40	10	0,725	33,00	45,54	1,65	2,28
14,60	11	0,723	36,25	50,10	1,81	2,50
14,80	11	0,722	36,19	50,10	1,81	2,50
15,00	11	0,721	34,81	48,27	1,74	2,41
15,20	11	0,720	34,75	48,27	1,74	2,41
15,40	11	0,719	34,69	48,27	1,73	2,41
15,60	11	0,717	34,63	48,27	1,73	2,41
15,80	12	0,716	37,71	52,66	1,89	2,63
16,00	13	0,665	36,59	55,03	1,83	2,75
16,20	13	0,664	36,51	55,03	1,83	2,75
16,40	12	0,712	36,18	50,80	1,81	2,54
16,60	12	0,711	36,10	50,80	1,81	2,54
16,80	14	0,659	39,07	59,26	1,95	2,96
17,00	15	0,658	40,35	61,33	2,02	3,07
17,20	15	0,656	40,25	61,33	2,01	3,07
17,40	16	0,655	42,83	65,42	2,14	3,27
17,60	16	0,653	42,73	65,42	2,14	3,27
17,80	15	0,651	39,96	61,33	2,00	3,07
18,00	14	0,650	35,97	55,36	1,80	2,77
18,20	13	0,648	33,31	51,40	1,67	2,57
18,40	12	0,696	33,04	47,45	1,65	2,37
18,60	12	0,694	32,95	47,45	1,65	2,37
18,80	10	0,692	27,38	39,54	1,37	1,98
19,00	10	0,691	26,43	38,28	1,32	1,91
19,20	11	0,688	28,99	42,11	1,45	2,11
19,40	11	0,686	28,90	42,11	1,45	2,11
19,60	12	0,684	31,43	45,94	1,57	2,30
19,80	13	0,632	31,46	49,77	1,57	2,49
20,00	13	0,630	30,38	48,23	1,52	2,41

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.4

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato 1	6,39	0,80	Terzaghi-Peck	0,40
Strato 2	2,89	5,80	Terzaghi-Peck	0,18
Strato 3	12	16,60	Terzaghi-Peck	0,81
Strato 4	21,36	18,60	Terzaghi-Peck	1,44
Strato 5	15,04	19,00	Terzaghi-Peck	1,02
Strato 6	18,05	20,00	Terzaghi-Peck	1,22

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato 1	6,39	0,80	Stroud e Butler (1975)	29,32
Strato 2	2,89	5,80	Stroud e Butler (1975)	13,26
Strato 3	12	16,60	Stroud e Butler (1975)	55,06
Strato 4	21,36	18,60	Stroud e Butler (1975)	98,00
Strato 5	15,04	19,00	Stroud e Butler (1975)	69,00
Strato 6	18,05	20,00	Stroud e Butler (1975)	82,81

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	6,39	0,80	Apollonia	63,90
Strato 2	2,89	5,80	Apollonia	28,90
Strato 3	12	16,60	Apollonia	120,00
Strato 4	21,36	18,60	Apollonia	213,60
Strato 5	15,04	19,00	Apollonia	150,40
Strato 6	18,05	20,00	Apollonia	180,50

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	6,39	0,80	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	2,89	5,80	Classificaz. A.G.I.	POCO
			(1977)	CONSISTENTE
Strato 3	12	16,60	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 4	21,36	18,60	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 5	15,04	19,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 6	18,05	20,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	6,39	0,80	Meyerhof ed altri	1,83
Strato 2	2,89	5,80	Meyerhof ed altri	1,63
Strato 3	12	16,60	Meyerhof ed altri	2,02
Strato 4	21,36	18,60	Meyerhof ed altri	2,10
Strato 5	15,04	19,00	Meyerhof ed altri	2,07
Strato 6	18,05	20,00	Meyerhof ed altri	2,09

Peso unità di volume saturo

	Nspt	Prof. Strato (m)	Correlazione	Peso unità di volume saturo (t/m³)
Strato 1	6,39	0,80	Bowles 1982, Terzaghi-Peck 1948/1967	1,89
Strato 2	2,89	5,80	Bowles 1982, Terzaghi-Peck 1948/1967	1,86
Strato 3	12	16,60	Bowles 1982, Terzaghi-Peck 1948/1967	
Strato 4	21,36	18,60	Bowles 1982, Terzaghi-Peck 1948/1967	2,13
Strato 5	15,04	19,00	Bowles 1982, Terzaghi-Peck 1948/1967	
Strato 6	18,05	20,00	Bowles 1982, Terzaghi-Peck 1948/1967	

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	6,39	0,80	6,39	Meyerhof 1957	60,37
Strato 2	2,89	5,80	2,89	Meyerhof 1957	31,88
Strato 3	12	16,60	12	Meyerhof 1957	50,41
Strato 4	21,36	18,60	18,18	Meyerhof 1957	54,06
Strato 5	15,04	19,00	15,02	Meyerhof 1957	48
Strato 6	18,05	20,00	16,525	Meyerhof 1957	49,7

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	6,39	0,80	6,39	Meyerhof (1956)	21,83
Strato 2	2,89	5,80	2,89	Meyerhof (1956)	20,83
Strato 3	12	16,60	12	Meyerhof (1956)	23,43
Strato 4	21,36	18,60	18,18	Meyerhof (1956)	25,19
Strato 5	15,04	19,00	15,02	Meyerhof (1956)	24,29
Strato 6	18,05	20,00	16,525	Meyerhof (1956)	24,72

Modulo di Young

Woodalo di Toding	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
	rtspt			Correlazione	0
		(m)	presenza falda		(Kg/cm ²)
Strato 1	6,39	0,80	6,39	Schmertmann	51,12
				(1978) (Sabbie)	
Strato 2	2,89	5,80	2,89	Schmertmann	23,12
				(1978) (Sabbie)	
Strato 3	12	16,60	12	Schmertmann	96,00
				(1978) (Sabbie)	
Strato 4	21,36	18,60	18,18	Schmertmann	145,44
				(1978) (Sabbie)	
Strato 5	15,04	19,00	15,02	Schmertmann	120,16
				(1978) (Sabbie)	
Strato 6	18,05	20,00	16,525	Schmertmann	132,20

	(1978) (Sabbie)	
	(19/0) (3a001e)	

Modulo Edometrico

Modulo Edollietric	.U				
	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Modulo Edometrico (Kg/cm²)
Strato 1	6,39	0,80	6,39	Begemann 1974 (Ghiaia con sabbia)	40,59
Strato 2	2,89	5,80	2,89	Begemann 1974 (Ghiaia con sabbia)	33,40
Strato 3	12	16,60	12	Begemann 1974 (Ghiaia con sabbia)	52,11
Strato 4	21,36	18,60	18,18	Begemann 1974 (Ghiaia con sabbia)	64,81
Strato 5	15,04	19,00	15,02	Begemann 1974 (Ghiaia con sabbia)	58,32
Strato 6	18,05	20,00	16,525	Begemann 1974 (Ghiaia con sabbia)	61,41

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	6,39	0,80	6,39	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 2	2,89	5,80	2,89	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 3	12	16,60	12	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 4	21,36	18,60	18,18	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 5	15,04	19,00	15,02	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 6	18,05	20,00	16,525	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

r eso unita ui voiun	He .				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 1	6,39	0,80	6,39	Meyerhof ed altri	1,60
Strato 2	2,89	5,80	2,89	Meyerhof ed altri	1,44
Strato 3	12	16,60	12	Meyerhof ed altri	1,79
Strato 4	21,36	18,60	18,18	Meyerhof ed altri	1,96
Strato 5	15,04	19,00	15,02	Meyerhof ed altri	1,88
Strato 6	18,05	20,00	16,525	Meyerhof ed altri	1,92

_ 000 0111100 01 10101					
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato 1	6,39	0,80	6,39	Terzaghi-Peck	1,90

				1948-1967	
Strato 2	2,89	5,80	2,89	Terzaghi-Peck 1948-1967	1,87
Strato 3	12	16,60	12	Terzaghi-Peck 1948-1967	1,93
Strato 4	21,36	18,60	18,18	Terzaghi-Peck 1948-1967	1,97
Strato 5	15,04	19,00	15,02	Terzaghi-Peck 1948-1967	1,95
Strato 6	18,05	20,00	16,525	Terzaghi-Peck 1948-1967	1,96

PROVA ...DP Nr.5

Strumento utilizzato... Prova eseguita in data Profondità prova 20,00 mt Falda rilevata

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	3	0,855	24,92	29,15	1,25	1,46
0,40	4	0,851	33,07	38,87	1,65	1,94
0,60	3	0,847	24,69	29,15	1,23	1,46
0,80	2	0,843	16,39	19,44	0,82	0,97
1,00	2	0,840	15,10	17,98	0,75	0,90
1,20	4	0,836	30,07	35,96	1,50	1,80
1,40	10	0,833	74,87	89,90	3,74	4,49
1,60	8	0,830	59,66	71,92	2,98	3,60
1,80	7	0,826	52,00	62,93	2,60	3,15
2,00	7	0,823	48,19	58,54	2,41	2,93
2,20	6	0,820	41,15	50,18	2,06	2,51
2,40	2	0,817	13,67	16,73	0,68	0,84
2,60	1	0,814	6,81	8,36	0,34	0,42
2,80	1	0,811	6,79	8,36	0,34	0,42
3,00	1	0,809	6,32	7,82	0,32	0,39
3,20	1	0,806	6,30	7,82	0,32	0,39
3,40	2	0,803	12,56	15,64	0,63	0,78
3,60	3	0,801	18,78	23,46	0,94	1,17
3,80	6	0,798	37,45	46,91	1,87	2,35
4,00	5	0,796	29,22	36,70	1,46	1,84
4,20	5	0,794	29,13	36,70	1,46	1,84
4,40	2	0,791	11,62	14,68	0,58	0,73
4,60	2	0,789	11,59	14,68	0,58	0,73
4,80	2	0,787	11,56	14,68	0,58	0,73
5,00	4	0,785	21,72	27,67	1,09	1,38
5,20	3	0,783	16,25	20,75	0,81	1,04
5,40	12	0,781	64,83	83,01	3,24	4,15
5,60	22 17	0,679	103,35	152,18	5,17	7,61
5,80		0,727	85,52	117,59	4,28	5,88
6,00 6,20	18 12	0,725 0,774	85,41 60,72	117,72 78,48	4,27 3,04	5,89
6,40	13		61,39	85,02	3,07	3,92 4,25
6,60	20	0,720	94,23	130,80	4,71	6,54
6,80	19	0,720	89,31	124,26	4,47	6,21
7,00	19	0,717	84,51	117,84	4,23	5,89
7,20	14	0,717	62,14	86,83	3,11	4,34
7,40	12	0,764	56,87	74,43	2,84	3,72
7,60	6	0,763	28,38	37,21	1,42	1,86
7,80	7	0,761	33,05	43,42	1,65	2,17
8,00	4	0,760	17,93	23,59	0,90	1,18
8,20	3	0,759	13,42	17,69	0,67	0,88
8,40	4	0,757	17,86	23,59	0,89	1,18
8,60	5	0,756	22,29	29,49	1,11	1,47
8,80	5	0,755	22,25	29,49	1,11	1,47

9,00	7	0,753	29,65	39,35	1,48	1,97
9,20	8	0,752	33,83	44,97	1,69	2,25
9,40	7	0,751	29,55	39,35	1,48	1,97
9,60	5	0,750	21,08	28,11	1,05	1,41
9,80	4	0,749	16,84	22,48	0,84	1,12
10,00	3	0,748	12,04	16,11	0,60	0,81
10,20	2	0,747	8,02	10,74	0,40	0,54
10,40	4	0,746	16,01	21,48	0,80	1,07
10,60	5	0,744	19,99	26,85	1,00	1,34
10,80	5	0,743	19,96	26,85	1,00	1,34
11,00	4	0,742	15,26	20,56	0,76	1,03
11,20	5	0,741	19,05	25,70	0,95	1,28
11,40	5	0,740	19,02	25,70	0,95	1,28
11,60	4	0,739	15,20	20,56	0,76	1,03
11,80	4	0,738	15,18	20,56	0,76	1,03
12,00	5	0,737	18,17	24,64	0,91	1,23
12,20	4	0,736	14,51	19,71	0,73	0,99
12,40	4	0,735	14,49	19,71	0,72	0,99
12,60	5	0,734	18,09	24,64	0,90	1,23
12,80	5	0,733	18,07	24,64	0,90	1,23
13,00	5	0,732	17,33	23,67	0,87	1,18
13,20	5	0,731	17,30	23,67	0,87	1,18
13,40	5	0,730	17,28	23,67	0,86	1,18
13,60	6	0,729	20,71	28,41	1,04	1,42
13,80	6	0,728	20,68	28,41	1,03	1,42
14,00	6	0,727	19,86	27,33	0,99	1,37
14,20	6	0,726	19,83	27,33	0,99	1,37
14,40	6	0,725	19,80	27,33	0,99	1,37
14,60	6	0,723	19,77	27,33	0,99	1,37
14,80	6	0,722	19,74	27,33	0,99	1,37
15,00	8	0,721	25,31	35,10	1,27	1,76
15,20	9	0,720	28,43	39,49	1,42	1,97
15,40	9	0,719	28,38	39,49	1,42	1,97
15,60	10	0,717	31,48	43,88	1,57	2,19
15,80	10	0,716	31,43	43,88	1,57	2,19
16,00	10	0,715	30,26	42,33	1,51	2,12
16,20	10	0,714	30,20	42,33	1,51	2,12
16,40	11	0,712	33,16	46,57	1,66	2,33
16,60	11	0,711	33,10	46,57	1,65	2,33
16,80	12	0,709	36,03	50,80	1,80	2,54
17,00	12	0,708	34,73	49,07	1,74	2,45
17,20	13	0,656	34,89	53,16	1,74	2,66
17,40	13	0,655	34,80	53,16	1,74	2,66
17,60	12	0,703	34,50	49,07	1,72	2,45
17,80	13	0,651	34,63	53,16	1,73	2,66
18,00	13	0,650	33,40	51,40	1,67	2,57
18,20	14	0,648	35,87	55,36	1,79	2,77
18,40	14	0,646	35,77	55,36	1,79	2,77
18,60	14	0,644	35,67	55,36	1,78	2,77
18,80	15	0,642	38,11	59,31	1,91	2,97
19,00	15	0,641	36,78	57,42	1,84	2,87
19,20	16	0,638	39,11	61,25	1,96	3,06
19,40	14	0,636	34,11	53,59	1,71	2,68
19,60	12	0,684	31,43	45,94	1,57	2,30
19,80	14	0,632	33,88	53,59	1,69	2,68
20,00	14	0,630	32,71	51,94	1,64	2,60

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.5

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	7,66	2,20	Terzaghi-Peck	0,48
Strato 2	2	3,40	Terzaghi-Peck	0,13
Strato 3	7,14	4,20	Terzaghi-Peck	0,45
Strato 4	3,91	5,20	Terzaghi-Peck	0,24
Strato 5	24,33	7,40	Terzaghi-Peck	1,64
Strato 6	7,22	8,40	Terzaghi-Peck	0,45
Strato 7	9,28	9,60	Terzaghi-Peck	0,63
Strato 8	4,51	10,20	Terzaghi-Peck	0,28
Strato 9	7,58	14,80	Terzaghi-Peck	0,47
Strato 10	18,39	20,00	Terzaghi-Peck	1,24

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	7,66	2,20	Stroud e Butler (1975)	35,14
Strato 2	2	3,40	Stroud e Butler (1975)	9,18
Strato 3	7,14	4,20	Stroud e Butler (1975)	32,76
Strato 4	3,91	5,20	Stroud e Butler (1975)	17,94
Strato 5	24,33	7,40	Stroud e Butler (1975)	111,63
Strato 6	7,22	8,40	Stroud e Butler (1975)	33,13
Strato 7	9,28	9,60	Stroud e Butler (1975)	42,58
Strato 8	4,51	10,20	Stroud e Butler (1975)	20,69
Strato 9	7,58	14,80	Stroud e Butler (1975)	34,78
Strato 10	18,39	20,00	Stroud e Butler (1975)	84,37

Modulo di Young

modulo di Toding				
	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato 1	7,66	2,20	Apollonia	76,60
Strato 2	2	3,40	Apollonia	20,00
Strato 3	7,14	4,20	Apollonia	71,40
Strato 4	3,91	5,20	Apollonia	39,10
Strato 5	24,33	7,40	Apollonia	243,30
Strato 6	7,22	8,40	Apollonia	72,20
Strato 7	9,28	9,60	Apollonia	92,80
Strato 8	4,51	10,20	Apollonia	45,10
Strato 9	7,58	14,80	Apollonia	75,80
Strato 10	18,39	20,00	Apollonia	183,90

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	7,66	2,20	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	2	3,40	Classificaz. A.G.I.	PRIVO DI
			(1977)	CONSISTENZA
Strato 3	7,14	4,20	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 4	3,91	5,20	Classificaz. A.G.I.	POCO
			(1977)	CONSISTENTE
Strato 5	24,33	7,40	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 6	7,22	8,40	Classificaz. A.G.I.	MODERAT.

			(1977)	CONSISTENTE
Strato 7	9,28	9,60	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 8	4,51	10,20	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 9	7,58	14,80	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 10	18,39	20,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	7,66	2,20	Meyerhof ed altri	1,89
Strato 2	2	3,40	Meyerhof ed altri	1,56
Strato 3	7,14	4,20	Meyerhof ed altri	1,86
Strato 4	3,91	5,20	Meyerhof ed altri	1,69
Strato 5	24,33	7,40	Meyerhof ed altri	2,11
Strato 6	7,22	8,40	Meyerhof ed altri	1,87
Strato 7	9,28	9,60	Meyerhof ed altri	1,95
Strato 8	4,51	10,20	Meyerhof ed altri	1,73
Strato 9	7,58	14,80	Meyerhof ed altri	1,88
Strato 10	18,39	20,00	Meyerhof ed altri	2,09

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	7,66	2,20	Bowles 1982,	1,90
			Terzaghi-Peck	
			1948/1967	
Strato 2	2	3,40	Bowles 1982,	1,85
			Terzaghi-Peck	
			1948/1967	
Strato 3	7,14	4,20	Bowles 1982,	1,90
			Terzaghi-Peck	
g	2.01	7.20	1948/1967	1.07
Strato 4	3,91	5,20	Bowles 1982,	1,87
			Terzaghi-Peck	
Ctuata 5	24.22	7.40	1948/1967	2.21
Strato 5	24,33	7,40	Bowles 1982, Terzaghi-Peck	2,21
			1948/1967	
Strato 6	7,22	8,40	Bowles 1982,	1,90
Strato	7,22	0,40	Terzaghi-Peck	1,50
			1948/1967	
Strato 7	9,28	9,60	Bowles 1982,	
Sumo /	,,20	,,,,,	Terzaghi-Peck	
			1948/1967	
Strato 8	4,51	10,20	Bowles 1982,	1,87
			Terzaghi-Peck	
			1948/1967	
Strato 9	7,58	14,80	Bowles 1982,	1,90
			Terzaghi-Peck	
			1948/1967	
Strato 10	18,39	20,00	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	7,66	2,20	7,66	Meyerhof 1957	61
Strato 2	2	3,40	2	Meyerhof 1957	27,01
Strato 3	7,14	4,20	7,14	Meyerhof 1957	49,26
Strato 4	3,91	5,20	3,91	Meyerhof 1957	35,53
Strato 5	24,33	7,40	19,665	Meyerhof 1957	75,46
Strato 6	7,22	8,40	7,22	Meyerhof 1957	43,42
Strato 7	9,28	9,60	9,28	Meyerhof 1957	47,83
Strato 8	4,51	10,20	4,51	Meyerhof 1957	32,63
Strato 9	7,58	14,80	7,58	Meyerhof 1957	39,97
Strato 10	18,39	20,00	16,695	Meyerhof 1957	53,44

Angolo di resistenza al taglio

ingolo ul resistenza ul tugno							
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito		
		(m)	presenza falda		(°)		
Strato 1	7,66	2,20	7,66	Meyerhof (1956)	22,19		
Strato 2	2	3,40	2	Meyerhof (1956)	20,57		
Strato 3	7,14	4,20	7,14	Meyerhof (1956)	22,04		
Strato 4	3,91	5,20	3,91	Meyerhof (1956)	21,12		
Strato 5	24,33	7,40	19,665	Meyerhof (1956)	25,62		
Strato 6	7,22	8,40	7,22	Meyerhof (1956)	22,06		
Strato 7	9,28	9,60	9,28	Meyerhof (1956)	22,65		
Strato 8	4,51	10,20	4,51	Meyerhof (1956)	21,29		
Strato 9	7,58	14,80	7,58	Meyerhof (1956)	22,17		
Strato 10	18,39	20,00	16,695	Meyerhof (1956)	24,77		

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	7,66	2,20	7,66	Schmertmann	61,28
				(1978) (Sabbie)	
Strato 2	2	3,40	2	Schmertmann	16,00
				(1978) (Sabbie)	
Strato 3	7,14	4,20	7,14	Schmertmann	57,12
				(1978) (Sabbie)	
Strato 4	3,91	5,20	3,91	Schmertmann	31,28
				(1978) (Sabbie)	
Strato 5	24,33	7,40	19,665	Schmertmann	157,32
			•	(1978) (Sabbie)	
Strato 6	7,22	8,40	7,22	Schmertmann	57,76
				(1978) (Sabbie)	
Strato 7	9,28	9,60	9,28	Schmertmann	74,24
				(1978) (Sabbie)	
Strato 8	4,51	10,20	4,51	Schmertmann	36,08
				(1978) (Sabbie)	
Strato 9	7,58	14,80	7,58	Schmertmann	60,64
				(1978) (Sabbie)	
Strato 10	18,39	20,00	16,695	Schmertmann	133,56
	·		•	(1978) (Sabbie)	

Modulo Edometrico

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo
		(m)	presenza falda		Edometrico
					(Kg/cm ²)
Strato 1	7,66	2,20	7,66	Begemann 1974	43,20
				(Ghiaia con	

				sabbia)	
Strato 2	2	3,40	2	Begemann 1974 (Ghiaia con sabbia)	31,57
Strato 3	7,14	4,20	7,14	Begemann 1974 (Ghiaia con sabbia)	42,13
Strato 4	3,91	5,20	3,91	Begemann 1974 (Ghiaia con sabbia)	35,50
Strato 5	24,33	7,40	19,665	Begemann 1974 (Ghiaia con sabbia)	67,86
Strato 6	7,22	8,40	7,22	Begemann 1974 (Ghiaia con sabbia)	42,29
Strato 7	9,28	9,60	9,28	Begemann 1974 (Ghiaia con sabbia)	46,53
Strato 8	4,51	10,20	4,51	Begemann 1974 (Ghiaia con sabbia)	36,73
Strato 9	7,58	14,80	7,58	Begemann 1974 (Ghiaia con sabbia)	43,03
Strato 10	18,39	20,00	16,695	Begemann 1974 (Ghiaia con sabbia)	61,76

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	7,66	2,20	7,66	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 2	2	3,40	2	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 3	7,14	4,20	7,14	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 4	3,91	5,20	3,91	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 5	24,33	7,40	19,665		MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 6	7,22	8,40	7,22	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 7	9,28	9,60	9,28	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 8	4,51	10,20	4,51	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 9	7,58	14,80	7,58	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 10	18,39	20,00	16,695	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma (t/m³)
Strato 1	7,66	2,20	7,66	Meyerhof ed altri	1,65

Strato 2	2	3,40	2	Meyerhof ed altri	1,40
Strato 3	7,14	4,20	7,14	Meyerhof ed altri	1,63
Strato 4	3,91	5,20	3,91	Meyerhof ed altri	1,49
Strato 5	24,33	7,40	19,665	Meyerhof ed altri	1,99
Strato 6	7,22	8,40	7,22	Meyerhof ed altri	1,63
Strato 7	9,28	9,60	9,28	Meyerhof ed altri	1,71
Strato 8	4,51	10,20	4,51	Meyerhof ed altri	1,52
Strato 9	7,58	14,80	7,58	Meyerhof ed altri	1,64
Strato 10	18,39	20,00	16,695	Meyerhof ed altri	1,92

Peso unita di volun		D C C: .	NT	G 1 .	G G :
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato 1	7,66	2,20	7,66	Terzaghi-Peck	1,90
				1948-1967	
Strato 2	2	3,40	2	Terzaghi-Peck	1,87
				1948-1967	
Strato 3	7,14	4,20	7,14	Terzaghi-Peck	1,90
				1948-1967	
Strato 4	3,91	5,20	3,91	Terzaghi-Peck	1,88
				1948-1967	
Strato 5	24,33	7,40	19,665	Terzaghi-Peck	
				1948-1967	
Strato 6	7,22	8,40	7,22	Terzaghi-Peck	1,90
				1948-1967	
Strato 7	9,28	9,60	9,28	Terzaghi-Peck	1,91
				1948-1967	
Strato 8	4,51	10,20	4,51	Terzaghi-Peck	1,88
				1948-1967	
Strato 9	7,58	14,80	7,58	Terzaghi-Peck	1,90
				1948-1967	
Strato 10	18,39	20,00	16,695	Terzaghi-Peck	1,96
				1948-1967	

PROVA ...DP Nr.6

Strumento utilizzato... DPSH (Dinamic Probing Super Heavy)
Prova eseguita in data
Profondità prova 20,00 mt
Falda rilevata

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda	Res. dinamica ridotta	Res. dinamica (Kg/cm²)	Pres. ammissibile con	Pres.
		Chi	(Kg/cm²)	(Rg/CIII)	riduzione Herminier -	Herminier - Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0,20	5	0,855	41,53	48,59	2,08	2,43
0,40	6	0,851	49,61	58,31	2,48	2,92
0,60	8	0,847	65,85	77,74	3,29	3,89
0,80	16	0,793	123,35	155,49	6,17	7,77
1,00	20	0,790	142,00	179,80	7,10	8,99
1,20	28	0,736	185,33	251,72	9,27	12,59
1,40	30 35	0,733 0,680	197,65	269,70	9,88	13,48
1,60 1,80	17	0,680	213,82 118,64	314,65	10,69	15,73 7,64
2,00	11	0,778	75,73	152,83 92,00	5,93 3,79	4,60
2,00	9	0,823	61,73	75,27	3,09	3,76
2,40	4	0,820	27,34	33,45	1,37	1,67
2,40	5	0,817	34,05	41,82	1,70	2,09
2,80	13	0,761	82,78	108,72	4,14	5,44
3,00	12	0,809	75,87	93,82	3,79	4,69
3,20	13	0,756	76,84	101,64	3,84	5,08
3,40	10	0,803	62,81	78,18	3,14	3,91
3,60	7	0,801	43,83	54,73	2,19	2,74
3,80	10	0,798	62,42	78,18	3,12	3,91
4,00	10	0,796	58,43	73,40	2,92	3,67
4,20	9	0,794	52,43	66,06	2,62	3,30
4,40	7	0,791	40,67	51,38	2,03	2,57
4,60	8	0,789	46,35	58,72	2,32	2,94
4,80	7	0,787	40,44	51,38	2,02	2,57
5,00	6	0,785	32,58	41,50	1,63	2,08
5,20	11	0,783	59,58	76,09	2,98	3,80
5,40	8	0,781	43,22	55,34	2,16	2,77
5,60	8	0,779	43,12	55,34	2,16	2,77
5,80	9	0,777	48,39	62,25	2,42	3,11
6,00	10	0,775	50,72	65,40	2,54	3,27
6,20	12	0,774	60,72	78,48	3,04	3,92
6,40	13	0,722	61,39			4,25
6,60	13	0,720	61,25	85,02	3,06	4,25
6,80	13	0,719	61,11	85,02	3,06	4,25
7,00	8	0,767	38,07	49,62	1,90	2,48
7,20	7	0,766	33,24	43,42	1,66	2,17
7,40	7	0,764	33,18	43,42	1,66	2,17
7,60	6	0,763	28,38		1,42	1,86
7,80	5	0,761	23,61	31,01	1,18	1,55
8,00	5	0,760	22,41	29,49	1,12	1,47
8,20	5	0,759	22,37	29,49	1,12	1,47
8,40	7	0,757	31,26		1,56	2,06
8,60	9	0,756	40,12	53,08	2,01	2,65

8,80	8	0,755	35,61	47,18	1,78	2,36
9,00	7	0,753	29,65	39,35	1,48	1,97
9,20	8	0,752	33,83	44,97	1,69	2,25
9,40	10	0,751	42,22	56,21	2,11	2,81
9,60	11	0,750	46,37	61,83	2,32	3,09
9,80	12	0,749	50,51	67,45	2,53	3,37
10,00	9	0,748	36,13	48,33	1,81	2,42
10,20	8	0,747	32,07	42,96	1,60	2,15
10,40	7	0,746	28,02	37,59	1,40	1,88
10,40	7	0,744	27,98	37,59	1,40	1,88
10,80	13	0,693	48,40	69,81	2,42	
11,00	14	0,692			2,42	3,49 3,60
11,00	15		49,82	71,96 77,10	2,49	3,85
	16	0,691	53,30			
11,40		0,690	56,76	82,23	2,84	4,11
11,60	16	0,689	56,68	82,23	2,83	4,11
11,80	10	0,738	37,94	51,40	1,90	2,57
12,00	7	0,737	25,43	34,50	1,27	1,73
12,20	7	0,736	25,40	34,50	1,27	1,73
12,40	7	0,735	25,36	34,50	1,27	1,73
12,60	7	0,734	25,33	34,50	1,27	1,73
12,80	8	0,733	28,91	39,43	1,45	1,97
13,00	9	0,732	31,19	42,61	1,56	2,13
13,20	10	0,731	34,61	47,34	1,73	2,37
13,40	10	0,730	34,56	47,34	1,73	2,37
13,60	10	0,729	34,51	47,34	1,73	2,37
13,80	11	0,728	37,91	52,08	1,90	2,60
14,00	5	0,727	16,55	22,77	0,83	1,14
14,20	5	0,726	16,53	22,77	0,83	1,14
14,40	5	0,725	16,50	22,77	0,83	1,14
14,60	4	0,723	13,18	18,22	0,66	0,91
14,80	15	0,672	45,93	68,32	2,30	3,42
15,00	18	0,671	53,01	78,98	2,65	3,95
15,20	18	0,670	52,91	78,98	2,65	3,95
15,40	20	0,669	58,69	87,76	2,93	4,39
15,60	22	0,617	59,61	96,54	2,98	4,83
15,80	24	0,616	64,89	105,31	3,24	5,27
16,00	10	0,715	30,26	42,33	1,51	2,12
16,20	11	0,714	33,23	46,57	1,66	2,33
16,40	12	0,712	36,18	50,80	1,81	2,54
16,60	10	0,711	30,09	42,33	1,50	2,12
16,80	9	0,709	27,02	38,10	1,35	1,90
17,00	9	0,708	26,05	36,80	1,30	1,84
17,20	10	0,706	28,88	40,89	1,44	2,04
17,40	11	0,705	31,70	44,98	1,58	2,25
17,40	12	0,703	34,50	49,07	1,72	2,45
17,80	15	0,651	39,96	61,33	2,00	3,07
18,00	15	0,650	38,54	59,31	1,93	2,97
18,20	10	0,698	27,60	39,51	1,38	1,98
	11	0,696			1,58	
18,40	11		30,28 32,95	43,50		2,17
18,60		0,694		47,45	1,65	2,37
18,80	13	0,642	33,03	51,40	1,65	2,57
19,00	13	0,641	31,87	49,77	1,59	2,49
19,20	10	0,688	26,36	38,28	1,32	1,91
19,40	10	0,686	26,28	38,28	1,31	1,91
19,60	9	0,684	23,58	34,45	1,18	1,72
19,80	9	0,682	23,50	34,45	1,18	1,72
20,00	11	0,680	27,74	40,81	1,39	2,04

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.6

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato 1	26,47	2,00	Terzaghi-Peck	1,79
Strato 2	9,02	2,60	Terzaghi-Peck	0,61
Strato 3	14,96	6,80	Terzaghi-Peck	1,01
Strato 4	9,23	8,20	Terzaghi-Peck	0,62
Strato 5	13,54	10,00	Terzaghi-Peck	0,91
Strato 6	11,02	10,60	Terzaghi-Peck	0,74
Strato 7	21,06	11,80	Terzaghi-Peck	1,42
Strato 8	12,93	13,80	Terzaghi-Peck	0,87
Strato 9	7,14	14,60	Terzaghi-Peck	0,45
Strato 10	29,33	15,80	Terzaghi-Peck	1,98
Strato 11	16,62	20,00	Terzaghi-Peck	1,12

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato 1	26,47	2,00	Stroud e Butler (1975)	121,44
Strato 2	9,02	2,60	Stroud e Butler (1975)	41,38
Strato 3	14,96	6,80	Stroud e Butler (1975)	68,64
Strato 4	9,23	8,20	Stroud e Butler (1975)	42,35
Strato 5	13,54	10,00	Stroud e Butler (1975)	62,12
Strato 6	11,02	10,60	Stroud e Butler (1975)	50,56
Strato 7	21,06	11,80	Stroud e Butler (1975)	96,62
Strato 8	12,93	13,80	Stroud e Butler (1975)	59,32
Strato 9	7,14	14,60	Stroud e Butler (1975)	32,76
Strato 10	29,33	15,80	Stroud e Butler (1975)	134,57
Strato 11	16,62	20,00	Stroud e Butler (1975)	76,25

Modulo di Young

8	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato 1	26,47	2,00	Apollonia	264,70
Strato 2	9,02	2,60	Apollonia	90,20
Strato 3	14,96	6,80	Apollonia	149,60
Strato 4	9,23	8,20	Apollonia	92,30
Strato 5	13,54	10,00	Apollonia	135,40
Strato 6	11,02	10,60	Apollonia	110,20
Strato 7	21,06	11,80	Apollonia	210,60
Strato 8	12,93	13,80	Apollonia	129,30
Strato 9	7,14	14,60	Apollonia	71,40
Strato 10	29,33	15,80	Apollonia	293,30
Strato 11	16,62	20,00	Apollonia	166,20

Classificazione AGI

Classificazione 1101				
	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	26,47	2,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 2	9,02	2,60	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 3	14,96	6,80	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 4	9,23	8,20	Classificaz. A.G.I.	CONSISTENTE

			(1977)	
Strato 5	13,54	10,00	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 6	11,02	10,60	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 7	21,06	11,80	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 8	12,93	13,80	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 9	7,14	14,60	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 10	29,33	15,80	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 11	16,62	20,00	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE

Peso unità di volume

r cso unita di volune	Nont	Dung Chunta	Camalaniana	Dana sunità di sualsuna
	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	26,47	2,00	Meyerhof ed altri	2,13
Strato 2	9,02	2,60	Meyerhof ed altri	1,94
Strato 3	14,96	6,80	Meyerhof ed altri	2,07
Strato 4	9,23	8,20	Meyerhof ed altri	1,94
Strato 5	13,54	10,00	Meyerhof ed altri	2,05
Strato 6	11,02	10,60	Meyerhof ed altri	2,00
Strato 7	21,06	11,80	Meyerhof ed altri	2,10
Strato 8	12,93	13,80	Meyerhof ed altri	2,04
Strato 9	7,14	14,60	Meyerhof ed altri	1,86
Strato 10	29,33	15,80	Meyerhof ed altri	2,15
Strato 11	16,62	20,00	Meyerhof ed altri	2,08

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	26,47	2,00	Bowles 1982,	2,27
			Terzaghi-Peck	
			1948/1967	
Strato 2	9,02	2,60	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 3	14,96	6,80	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 4	9,23	8,20	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 5	13,54	10,00	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 6	11,02	10,60	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 7	21,06	11,80	Bowles 1982,	2,12
			Terzaghi-Peck	
			1948/1967	
Strato 8	12,93	13,80	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

1,90	Bowles 1982,	14,60	7,14	Strato 9
	Terzaghi-Peck			
	1948/1967			
2,35	Bowles 1982,	15,80	29,33	Strato 10
	Terzaghi-Peck			
	1948/1967			
	Bowles 1982,	20,00	16,62	Strato 11
	Terzaghi-Peck			
	1948/1967			

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	26,47	2,00	26,47	Meyerhof 1957	100
Strato 2	9,02	2,60	9,02	Meyerhof 1957	57,96
Strato 3	14,96	6,80	14,96	Meyerhof 1957	63,48
Strato 4	9,23	8,20	9,23	Meyerhof 1957	45,95
Strato 5	13,54	10,00	13,54	Meyerhof 1957	53,48
Strato 6	11,02	10,60	11,02	Meyerhof 1957	46,87
Strato 7	21,06	11,80	18,03	Meyerhof 1957	58,69
Strato 8	12,93	13,80	12,93	Meyerhof 1957	47,97
Strato 9	7,14	14,60	7,14	Meyerhof 1957	34,69
Strato 10	29,33	15,80	22,165	Meyerhof 1957	59,94
Strato 11	16,62	20,00	15,81	Meyerhof 1957	48,08

Angolo di resistenza al taglio

ringolo di resistenz	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		()
Strato 1	26,47	2,00	26,47	Meyerhof (1956)	27,56
Strato 2	9,02	2,60	9,02	Meyerhof (1956)	22,58
Strato 3	14,96	6,80	14,96	Meyerhof (1956)	24,27
Strato 4	9,23	8,20	9,23	Meyerhof (1956)	22,64
Strato 5	13,54	10,00	13,54	Meyerhof (1956)	23,87
Strato 6	11,02	10,60	11,02	Meyerhof (1956)	23,15
Strato 7	21,06	11,80	18,03	Meyerhof (1956)	25,15
Strato 8	12,93	13,80	12,93	Meyerhof (1956)	23,69
Strato 9	7,14	14,60	7,14	Meyerhof (1956)	22,04
Strato 10	29,33	15,80	22,165	Meyerhof (1956)	26,33
Strato 11	16,62	20,00	15,81	Meyerhof (1956)	24,52

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	26,47	2,00	26,47	Schmertmann	211,76
				(1978) (Sabbie)	
Strato 2	9,02	2,60	9,02	Schmertmann	72,16
				(1978) (Sabbie)	
Strato 3	14,96	6,80	14,96	Schmertmann	119,68
				(1978) (Sabbie)	
Strato 4	9,23	8,20	9,23	Schmertmann	73,84
				(1978) (Sabbie)	
Strato 5	13,54	10,00	13,54	Schmertmann	108,32
				(1978) (Sabbie)	
Strato 6	11,02	10,60	11,02	Schmertmann	88,16
				(1978) (Sabbie)	
Strato 7	21,06	11,80	18,03	Schmertmann	144,24
		·		(1978) (Sabbie)	
Strato 8	12,93	13,80	12,93	Schmertmann	103,44

				(1978) (Sabbie)	
Strato 9	7,14	14,60	7,14	Schmertmann	57,12
				(1978) (Sabbie)	
Strato 10	29,33	15,80	22,165	Schmertmann	177,32
				(1978) (Sabbie)	
Strato 11	16,62	20,00	15,81	Schmertmann	126,48
				(1978) (Sabbie)	

Modulo Edometrico

Modulo Edometric	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo
	търг	(m)	presenza falda	Correlazione	Edometrico
		(111)	presenza raida		(Kg/cm ²)
Strato 1	26,47	2,00	26,47	Begemann 1974	81,83
Strato 1	20,17	2,00	20,17	(Ghiaia con	01,03
				sabbia)	
Strato 2	9,02	2,60	9,02	Begemann 1974	45,99
	,	,	,	(Ghiaia con	,
				sabbia)	
Strato 3	14,96	6,80	14,96	Begemann 1974	58,19
				(Ghiaia con	
				sabbia)	
Strato 4	9,23	8,20	9,23	Begemann 1974	46,42
				(Ghiaia con	
				sabbia)	
Strato 5	13,54	10,00	13,54	Begemann 1974	55,28
				(Ghiaia con	
				sabbia)	
Strato 6	11,02	10,60	11,02	Begemann 1974	50,10
				(Ghiaia con	
C 7	21.06	11.00	10.02	sabbia)	C1.50
Strato 7	21,06	11,80	18,03	Begemann 1974	64,50
				(Ghiaia con	
Strato 8	12,93	13,80	12,93	sabbia) Begemann 1974	54,02
Suato o	12,93	13,60	12,93	(Ghiaia con	34,02
				sabbia)	
Strato 9	7,14	14,60	7,14	Begemann 1974	42,13
Strato	7,14	14,00	7,14	(Ghiaia con	42,13
				sabbia)	
Strato 10	29,33	15,80	22,165	Begemann 1974	72,99
2.2	_,,,,,	-2,00	,-	(Ghiaia con	. –,
				sabbia)	
Strato 11	16,62	20,00	15,81	Begemann 1974	59,94
	·	,	,	(Ghiaia con	,
				sabbia)	

Classificazione AGI

Classificazione AG	*				
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	26,47	2,00	26,47	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 2	9,02	2,60	9,02	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 3	14,96	6,80	14,96	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 4	9,23	8,20	9,23	Classificazione	POCO
				A.G.I. 1977	ADDENSATO

Strato 5	13,54	10,00	13,54	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 6	11,02	10,60	11,02	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 7	21,06	11,80	18,03	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 8	12,93	13,80	12,93	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 9	7,14	14,60	7,14	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 10	29,33	15,80	22,165	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 11	16,62	20,00	15,81	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 1	26,47	2,00	26,47	Meyerhof ed altri	2,10
Strato 2	9,02	2,60	9,02	Meyerhof ed altri	1,70
Strato 3	14,96	6,80	14,96	Meyerhof ed altri	1,88
Strato 4	9,23	8,20	9,23	Meyerhof ed altri	1,70
Strato 5	13,54	10,00	13,54	Meyerhof ed altri	1,84
Strato 6	11,02	10,60	11,02	Meyerhof ed altri	1,76
Strato 7	21,06	11,80	18,03	Meyerhof ed altri	1,95
Strato 8	12,93	13,80	12,93	Meyerhof ed altri	1,82
Strato 9	7,14	14,60	7,14	Meyerhof ed altri	1,63
Strato 10	29,33	15,80	22,165	Meyerhof ed altri	2,03
Strato 11	16,62	20,00	15,81	Meyerhof ed altri	1,90

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma Saturo (t/m³)
Strato 1	26,47	2,00	26,47	Terzaghi-Peck	(VIII)
Strato 2	9,02	2,60	9,02	1948-1967 Terzaghi-Peck	1,91
Strato 3	14,96	6,80	14,96	1948-1967 Terzaghi-Peck	1,95
Strato 4	9,23	8,20	9,23	1948-1967 Terzaghi-Peck	1,91
	,	·	·	1948-1967	
Strato 5	13,54	10,00	13,54	Terzaghi-Peck 1948-1967	1,94
Strato 6	11,02	10,60	11,02	Terzaghi-Peck 1948-1967	1,92
Strato 7	21,06	11,80	18,03	Terzaghi-Peck 1948-1967	1,97
Strato 8	12,93	13,80	12,93	Terzaghi-Peck 1948-1967	1,94
Strato 9	7,14	14,60	7,14	Terzaghi-Peck 1948-1967	1,90
Strato 10	29,33	15,80	22,165	Terzaghi-Peck 1948-1967	

Strato 11	16,62	20,00	15,81	Terzaghi-Peck	1,95
				1948-1967	

Falda non rilevata

PROVA ...DP Nr.7

Strumento utilizzato... Prova eseguita in data Profondità prova 12,40 mt

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
Tioronalia (III)	тч. Согрт	riduzione sonda Chi	ridotta (Kg/cm²)	(Kg/cm²)	ammissibile con riduzione Herminier - Olandesi	ammissibile Herminier - Olandesi (Kg/cm²)
0.20	0	0.055	0.00	0.00	(Kg/cm²)	0.00
0,20	0	0,855	0,00	0,00	0,00	0,00
0,40	0	0,851	0,00	0,00	0,00	0,00
0,60	5	0,847	41,16	48,59	2,06	2,43
0,80	8	0,843	65,56	77,74	3,28	3,89
1,00	9	0,840	67,94	80,91	3,40	4,05
1,20 1,40	9	0,836	67,66	80,91	3,38	4,05
1,40	9	0,833 0,830	59,90 67,12	71,92 80,91	2,99 3,36	3,60
1,80	9	0,830	66,86	80,91	3,34	4,05
2,00	8	0,828	55,08	66,91	2,75	4,05 3,35
2,00	9	0,823	61,73	75,27	3,09	3,76
2,40	10	0,820	68,34	83,63	3,42	4,18
2,40	9	0,817	61,29	75,27	3,06	3,76
2,80	9	0,814	61,08	75,27	3,05	3,76
3,00	11	0,809	69,55	86,00	3,48	4,30
3,20	10	0,809	63,02	78,18	3,15	3,91
3,40	12	0,803	75,38	93,82	3,77	4,69
3,60	11	0,803	68,88	86,00	3,44	4,30
3,80	12	0,798	74,91	93,82	3,75	4,69
4,00	12	0,796	70,12	88,08	3,73	4,40
4,20	9	0,794	52,43	66,06	2,62	3,30
4,40	5	0,791	29,05	36,70	1,45	1,84
4,60	6	0,789	34,76		1,74	2,20
4,80	8	0,787	46,22	58,72	2,31	2,94
5,00	5	0,785	27,15	34,59	1,36	1,73
5,20	6	0,783	32,50		1,62	2,08
5,40	19	0,731	96,08	131,43	4,80	6,57
5,60	12	0,779	64,67	83,01	3,23	4,15
5,80	11	0,777	59,14	76,09	2,96	3,80
6,00	12	0,775	60,86	78,48	3,04	3,92
6,20	13	0,724	61,53	85,02	3,08	4,25
6,40	12	0,772	60,59	78,48	3,03	3,92
6,60	11	0,770	55,42	71,94	2,77	3,60
6,80	12	0,769	60,33	78,48	3,02	3,92
7,00	12	0,767	57,10		2,85	3,72
7,20	12	0,766	56,98	74,43	2,85	3,72
7,40	11	0,764	52,13	68,22	2,61	3,41
7,60	11	0,763	52,03	68,22	2,60	3,41
7,80	12	0,761	56,66		2,83	3,72
8,00	14	0,710	58,61	82,56	2,93	4,13
8,20	15	0,709	62,68		3,13	4,42
8,40	16	0,707	66,74		3,34	4,72
8,60	16		66,61	94,36		4,72
8,80	16	0,705	66,50	94,36	3,32	4,72

9,00) 16	0,703	63,27	89,94	3,16	4,50
9,20	15	0,702	59,22	84,32	2,96	4,22
9,40	13	0,701	51,23	73,08	2,56	3,65
9,60	13	0,700	51,15	73,08	2,56	3,65
9,80	13	0,699	51,07	73,08	2,55	3,65
10,00) 11	0,748	44,16	59,07	2,21	2,95
10,20	12	0,747	48,11	64,44	2,41	3,22
10,40	12	0,746	48,04	64,44	2,40	3,22
10,60	12	0,744	47,97	64,44	2,40	3,22
10,80	13	0,693	48,40	69,81	2,42	3,49
11,00	15	0,692	53,38	77,10	2,67	3,85
11,20) 15	0,691	53,30	77,10	2,66	3,85
11,40) 14	0,690	49,67	71,96	2,48	3,60
11,60) 14	0,689	49,60	71,96	2,48	3,60
11,80) 15	0,688	53,06	77,10	2,65	3,85
12,00	23	0,637	72,23	113,36	3,61	5,67
12,20	9 41	0,536	108,35	202,07	5,42	10,10
12,40	50	0,535	131,88	246,43	6,59	12,32

STIMA PARAMETRI GEOTECNICI PROVA DP Nr.7

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	12,81	4,20	Terzaghi-Peck	0,87
Strato 2	9,02	5,20	Terzaghi-Peck	0,61
Strato 3	20,05	11,80	Terzaghi-Peck	1,35
Strato 4	57,15	12,40	Terzaghi-Peck	3,86

Modulo Edometrico

1,1000000				
	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato 1	12,81	4,20	Stroud e Butler (1975)	58,77
Strato 2	9,02	5,20	Stroud e Butler (1975)	41,38
Strato 3	20,05	11,80	Stroud e Butler (1975)	91,99
Strato 4	57,15	12,40	Stroud e Butler (1975)	262,20

Modulo di Young

J	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato 1	12,81	4,20	Apollonia	128,10
Strato 2	9,02	5,20	Apollonia	90,20
Strato 3	20,05	11,80	Apollonia	200,50
Strato 4	57,15	12,40	Apollonia	571,50

Classificazione AGI

Classificazione AGI				
	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	12,81	4,20	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 2	9,02	5,20	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 3	20,05	11,80	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 4	57,15	12,40	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	12,81	4,20	Meyerhof ed altri	2,03
Strato 2	9,02	5,20	Meyerhof ed altri	1,94
Strato 3	20,05	11,80	Meyerhof ed altri	2,10
Strato 4	57,15	12,40	Meyerhof ed altri	4,93

Peso unità di volume saturo

i eso unita di volunte sa				
	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	12,81	4,20	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 2	9,02	5,20	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 3	20,05	11,80	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	
Strato 4	57,15	12,40	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

TERRENI INCOERENTI

Densità relativa

	Nspt Prof. Strato		Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	12,81	4,20	12,81	Meyerhof 1957	70,82
Strato 2	9,02	5,20	9,02	Meyerhof 1957	49,11
Strato 3	20,05	11,80	20,05	Meyerhof 1957	60,2
Strato 4	57,15	12,40	57,15	Meyerhof 1957	87,65

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	12,81	4,20	12,81	Meyerhof (1956)	23,66
Strato 2	9,02	5,20	9,02	Meyerhof (1956)	22,58
Strato 3	20,05	11,80	20,05	Meyerhof (1956)	25,73
Strato 4	57,15	12,40	57,15	Meyerhof (1956)	36,33

Modulo di Young

modulo di Todiig					
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	12,81	4,20	12,81	Schmertmann	102,48
				(1978) (Sabbie)	
Strato 2	9,02	5,20	9,02	Schmertmann	72,16
				(1978) (Sabbie)	
Strato 3	20,05	11,80	20,05	Schmertmann	160,40
				(1978) (Sabbie)	
Strato 4	57,15	12,40	57,15	Schmertmann	457,20
				(1978) (Sabbie)	

Modulo Edometrico

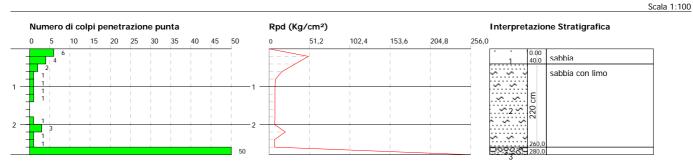
Midding Eddinging	Wiodulo Edolitet Ico											
	Nspt	Prof. Strato Nspt corretto per		Correlazione	Modulo							
		(m)	presenza falda		Edometrico							

					(Kg/cm²)
Strato 1	12,81	4,20	12,81	Begemann 1974	53,78
				(Ghiaia con	
				sabbia)	
Strato 2	9,02	5,20	9,02	Begemann 1974	45,99
				(Ghiaia con	
				sabbia)	
Strato 3	20,05	11,80	20,05	Begemann 1974	68,65
				(Ghiaia con	
				sabbia)	
Strato 4	57,15	12,40	57,15	Begemann 1974	144,85
				(Ghiaia con	
				sabbia)	

Classificazione AGI

Classificazione AO	AMBINITURE TO T											
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione							
		(m)	presenza falda		AGI							
Strato 1	12,81	4,20	12,81	Classificazione	MODERATAME							
				A.G.I. 1977	NTE							
					ADDENSATO							
Strato 2	9,02	5,20	9,02	Classificazione	POCO							
				A.G.I. 1977	ADDENSATO							
Strato 3	20,05	11,80	20,05	Classificazione	MODERATAME							
				A.G.I. 1977	NTE							
					ADDENSATO							
Strato 4	57,15	12,40	57,15	Classificazione	MOLTO							
				A.G.I. 1977	ADDENSATO							

Peso unità di volume

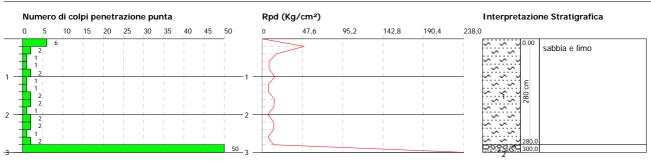

coo annu ar i oran					
	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m^3)
Strato 1	12,81	4,20	12,81	Meyerhof ed altri	1,82
Strato 2	9,02	5,20	9,02	Meyerhof ed altri	1,70
Strato 3	20,05	11,80	20,05	Meyerhof ed altri	1,99
Strato 4	57,15	12,40	57,15	Meyerhof ed altri	2,27

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma Saturo
		(m)	presenza falda		(t/m^3)
Strato 1	12,81	4,20	12,81	Terzaghi-Peck	1,94
				1948-1967	
Strato 2	9,02	5,20	9,02	Terzaghi-Peck	1,91
				1948-1967	
Strato 3	20,05	11,80	20,05	Terzaghi-Peck	
				1948-1967	
Strato 4	57,15	12,40	57,15	Terzaghi-Peck	
				1948-1967	

PROVA PENETROMETRICA DINAMICA DP Nr.1 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Committente : Cantiere : Località : Dipartimento di Cultura del Progetto

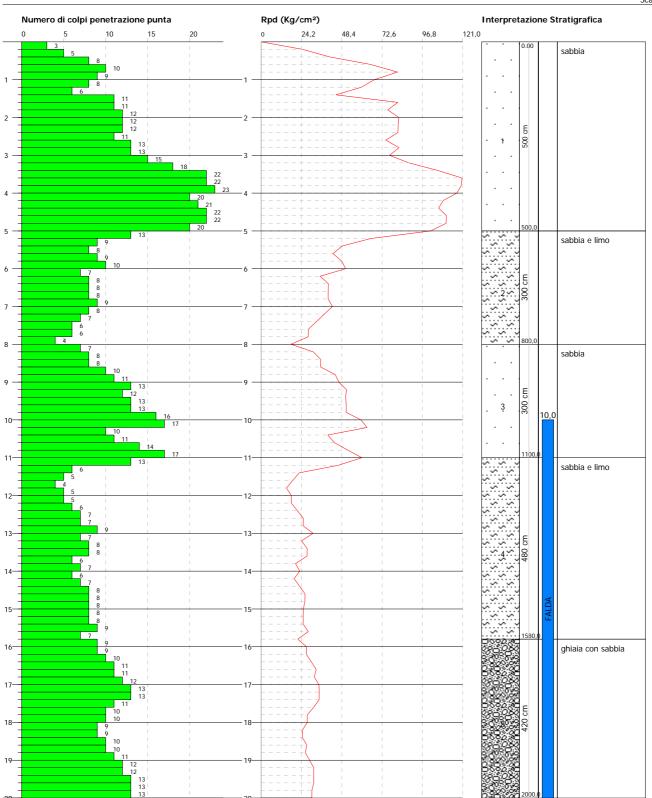
Sessa Aurunca (CE)


Data :16/04/2007

PROVA PENETROMETRICA DINAMICA DP Nr.1_1 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

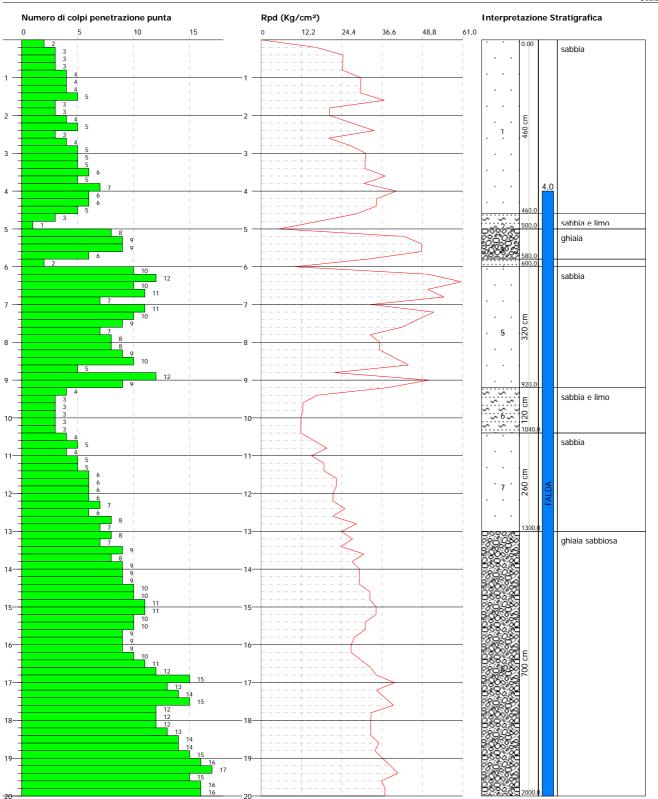
Committente : Cantiere : Località : Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Scala 1:100


Data :16/04/2007

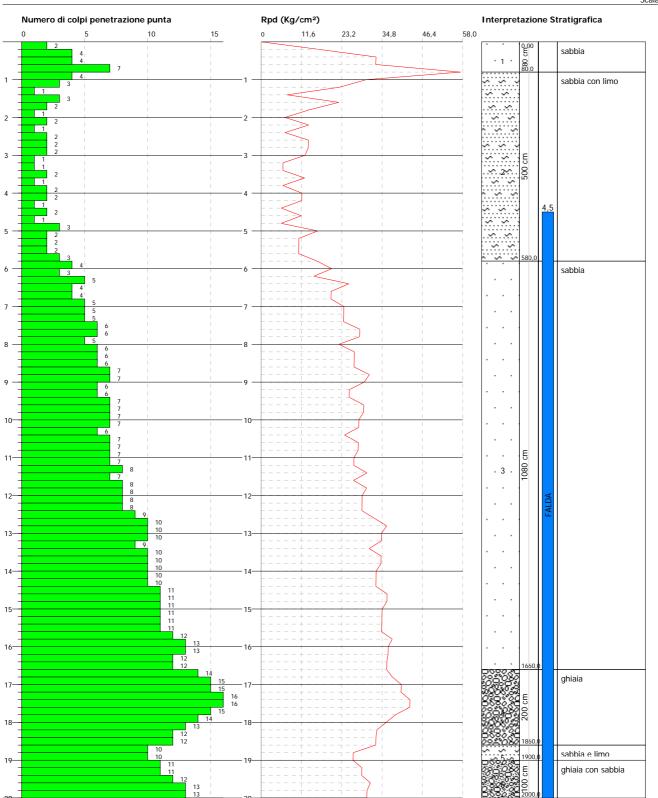
PROVA PENETROMETRICA DINAMICA DP Nr.2 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Committente : Cantiere : Località : Dipartimento di Cultura del Progetto Data:17/04/2007


Sessa Aurunca (CE)

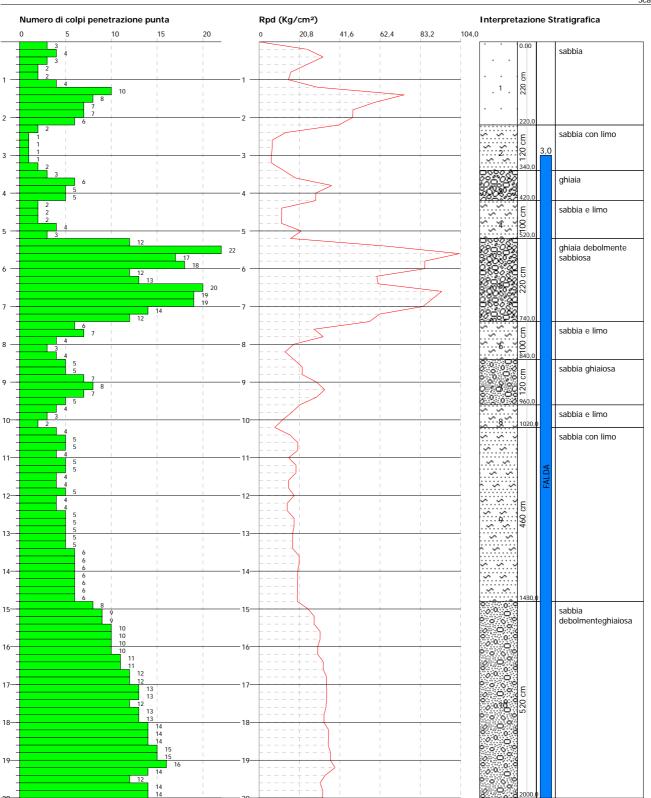
PROVA PENETROMETRICA DINAMICA DP Nr.3 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Committente : Dipartimento di Cultura del Progetto Data :17/04/2007


Cantiere : Sessa Aurunca (CE) Località :

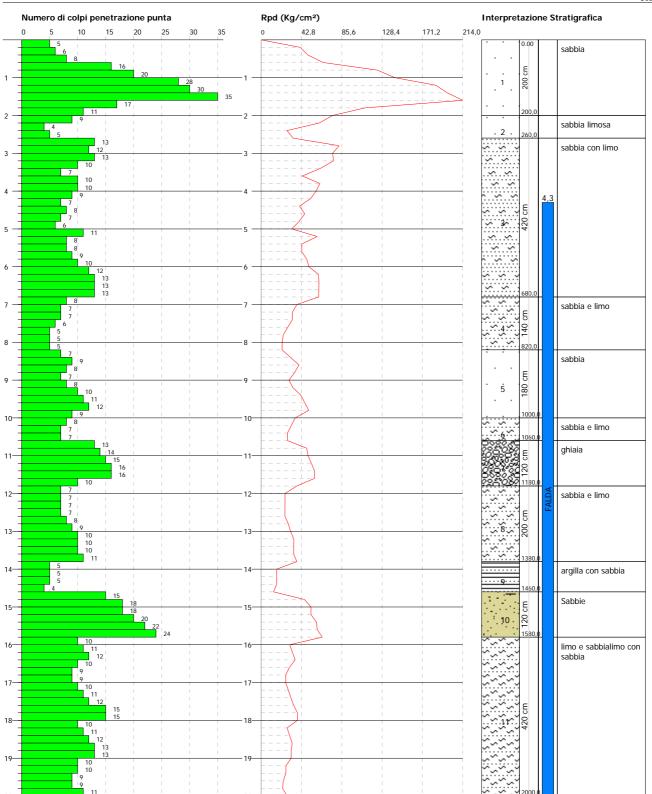
PROVA PENETROMETRICA DINAMICA DP Nr.4 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Committente : Dipartimento di Cultura del Progetto Data :27/04/2007


Cantiere : Sessa Aurunca (CE) Località :

PROVA PENETROMETRICA DINAMICA DP Nr.5 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

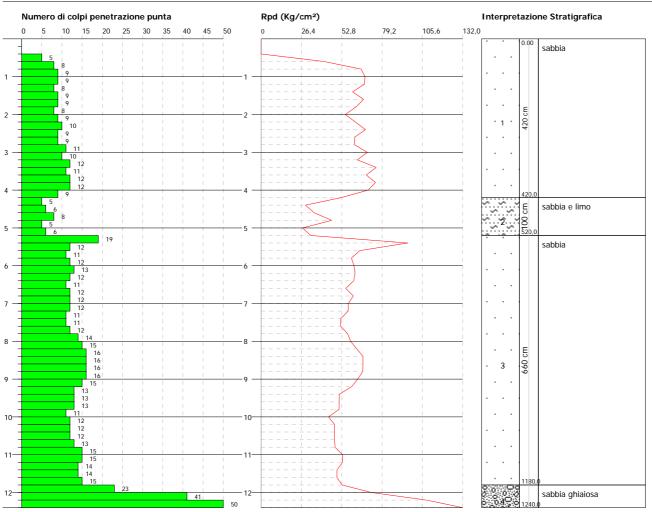
Committente : Dipartimento di Cultura del Progetto Data :27/04/2007


Cantiere : Sessa Aurunca (CE) Località :

PROVA PENETROMETRICA DINAMICA DP Nr.6 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Committente : Dipartimento di Cultura del Progetto Data :30/04/2007

Cantiere : Sessa Aurunca (CE) Località :


PROVA PENETROMETRICA DINAMICA DP Nr.7 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Committente : Dipartimento di Cultura del Progetto

Cantiere : Sessa Aurunca (CE) Località :

Scala 1:100

Data:07/05/2007

PROVA PENETROMETRICA STATICA

Committente: Dipartimento di Cultura del Progetto

Cantiere: Sessa Aurunca (CE)

Località:

Caratteristiche Strumentali PAGANI TG 63 (200 kN)

Rif. Norme	ASTM D3441-86
Diametro Punta conica meccanica (mm)	35,7
Angolo di apertura punta (°)	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	20
Costante di trasformazione Ct	10

PROVA ... CPT Nr.1

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 16/04/2007
Profondità prova 2,80 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	1,67	0,0	
0,40	18,0	43,0	18,0	-0,27	-66,67	-1,5
0,60	19,0	15,0	19,0	0,2	95,0	1,05
0,80	5,0	8,0	5,0	0,13	38,46	2,6
1,00	4,0	6,0	4,0	0,13	30,77	3,25
1,20	2,0	4,0	2,0	0,13	15,38	6,5
1,40	3,0	5,0	3,0	0,73	4,11	24,33
1,60	4,0	15,0	4,0	0,33	12,12	8,25
1,80	5,0	10,0	5,0	1,53	3,27	30,6
2,00	15,0	38,0	15,0	1,53	9,8	10,2
2,20	15,0	38,0	15,0	1,0	15,0	6,67
2,40	2,0	17,0	2,0	1,13	1,77	56,5
2,60	6,0	23,0	6,0	0,2	30,0	3,33
2,80	23,0	26,0	23,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Sabbie metastabili
0,60	Sabbie metastabili
0,80	Materiali sensitivi coesivi ed incoerenti
1,00	
1,20	Torba e Argille organiche
1,40	Torba e Argille organiche
1,60	
1,80	
2,00	Argille sensitive
2,20	
2,40	
2,60	Argille sensitive
2,80	Sabbie metastabili

STIMA PARAMETRI GEOTECNICI CPT Nr.1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsione	ion arenae	a (IXg/CIII	,									
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk = (20)
							n and	1977				
							Powell					
							1977					
Strato 1	0,60	12,33	0,53	0,70	0,89	0,82	0,72	0,65	0,62	0,88	0,62	0,61
Strato 2	1,80	3,83	0,5	0,21	0,29	0,24	0,21	0,19	0,19	0,26	0,19	0,18
Strato 3	2,20	15,0	1,27	0,84	1,03	0,98	0,86	0,77	0,75	1,05	0,75	0,73
Strato 4	2,40	2,0	1,13	0,09	0,13	0,11	0,10	0,09	0,10	0,12	0,10	0,08
Strato 5	2,80	14,5	0,1	0,81	0,99	0,94	0,83	0,74	0,72	1,01	0,73	0,70

TERRENI INCOERENTI

Densità relativa (%)

Densita I ciativ	a (/0)							
	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m) (Kg/cm²) (F		(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	0,60	12,33	0,53	52,39	81,2	77,93	53,11	100
Strato 2	1,80	3,83	0,5	< 5	< 5	5	5	23,02
Strato 3	2,20	15,0	1,27	28,23	32,08	34,33	28,74	45,69

Strato 4	2,40	2,0	1,13	< 5	< 5	5	5	5
Strato 5	2,80	14,5	0,1	23,15	23,05	26,2	23,61	36,42

Angolo di resistenza al taglio (°)

g	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	0,60	12,33	0,53	41,02	38,31	35,75	33,26	39,37	45	37,36	22,54
Strato 2	1,80	3,83	0,5	28,58	24,98	21,75	20,47	28,7	31,49	22,24	18,72
Strato 3	2,20	15,0	1,27	32,55	28,91	25,87	24,23	32,49	36,48	24,26	23,74
Strato 4	2,40	2,0	1,13	22,17	18,14	14,56	13,9	28,7	19,01	21,27	17,9
Strato 5	2,80	14,5	0,1	31,08	27,3	24,18	22,7	31,23	34,51	23,4	23,51

Modulo di Young (Kg/cm²)

miodalo di Toding (
	Prof. Strato	Prof. Strato qc		Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	0,60	12,33	0,53	30,82	24,66	77,14
Strato 2	1,80	3,83	0,5	9,57	7,66	58,98
Strato 3	2,20	15,0	1,27	37,50	30,00	182,26
Strato 4	2,40	2,0	1,13	5,00	4,00	30,80
Strato 5	2,80	14,5	0,1	36,25	29,00	191,89

Modulo Edometrico (Kg/cm²)

Middulo Eddillo	curco (ixg/cm)							
	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	0,60	12,33	0,53	64,98	48,37	93,15	24,66	61,65
Strato 2	1,80	3,83	0,5	6,16	15,02	21,87	7,66	30,64
Strato 3	2,20	15,0	1,27	29,52	58,84	112,87	30,00	75,00
Strato 4	2,40	2,0	1,13	8,37	7,85	5,18	4,00	16,00
Strato 5	2,80	14,5	0,1	23,62	56,88	107,86	29,00	72,50

Peso unità di volume

i cso unita ui voiunic					
	Prof. Strato	Prof. Strato qc		Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
Strato 1	0,60	12,33	0,53	Meyerhof	1,80
Strato 2	1,80	3,83	0,5	Meyerhof	1,80
Strato 3	2,20	15,0	1,27	Meyerhof	1,80
Strato 4	2,40	2,0	1,13	Meyerhof	1,80
Strato 5	2,80	14,5	0,1	Meyerhof	1,90

	$\begin{array}{c cccc} Prof. \ Strato & qc & fs \\ \hline (m) & (Kg/cm^2) & (Kg/cm^2) \end{array}$		fs (Kg/cm²)	Correlazione	Peso unità di volume saturo
					(t/m^3)
Strato 1	0,60	12,33	0,53	Meyerhof	2,10
Strato 2	1,80	3,83	0,5	Meyerhof	2,10
Strato 3	2,20	15,0	1,27	Meyerhof	2,10
Strato 4	2,40	2,0	1,13	Meyerhof	2,10
Strato 5	2,80	14,5	0,1	Meyerhof	2,20

PROVA ... CPT Nr.2

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 16/04/2007
Profondità prova 20,60 mt

Profondità (m)	Lettura punta (Kg/cm²)	Lettura laterale (Kg/cm²)	qc (Kg/cm²)	fs (Kg/cm²)	qc/fs Begemann	fs/qcx100 (Schmertmann)
0,20		0,0	0,0	3,53	0,0	
0,40		65,0	12,0	1,33	9,02	11,08
0,60	0 21,0	41,0	21,0	1,33	15,79	6,33
0,80	0 20,0	40,0	20,0	0,93	21,51	4,65
1,00	0 16,0	30,0	16,0	1,13	14,16	7,06
1,20	0 18,0	35,0	18,0	1,67	10,78	9,28
1,40	0 15,0	40,0	15,0	1,47	10,2	9,8
1,60	0 30,0	52,0	30,0	1,73	17,34	5,77
1,80	0 27,0	53,0	27,0	1,47	18,37	5,44
2,0		47,0	25,0	1,0	25,0	4,0
2,20		40,0	25,0	1,2	20,83	4,8
2,40	0 18,0	36,0	18,0	0,8	22,5	4,44
2,60	0 15,0	27,0	15,0	0,87	17,24	5,8
2,80	9,0	22,0	9,0	0,33	27,27	3,67
3,00	0 10,0	15,0	10,0	0,47	21,28	4,7
3,20		14,0	7,0	0,27	25,93	3,86
3,40		7,0	3,0	0,2	15,0	6,67
3,60	0 1,0	4,0	1,0	0,13	7,69	13,0
3,80		3,0	1,0	0,13	7,69	13,0
4,0		4,0	2,0	0,13	15,38	6,5
4,20	7,0	9,0	7,0	0,4	17,5	5,71
4,40		12,0	6,0	0,33	18,18	5,5
4,60	0 4,0	9,0	4,0	0,33	12,12	8,25
4,80		9,0	4,0	0,07	57,14	1,75
5,0		11,0	10,0	0,47	21,28	4,7
5,20		9,0	2,0	0,13	15,38	6,5
5,40		4,0	2,0	0,2	10,0	10,0
5,60		4,0	1,0	0,13	7,69	13,0
5,80		4,0	2,0	0,13	15,38	6,5
6,0		3,0	1,0	0,13	7,69	13,0
6,20		3,0	1,0	0,13	7,69	13,0
6,4		3,0	1,0	0,13	7,69	13,0
6,60		3,0	1,0	0,13	7,69	13,0
6,80		5,0	3,0	0,13	23,08	4,33
7,0		5,0	3,0	0,2	15,0	6,67
7,20		6,0	3,0	0,27	11,11	9,0
7,40		6,0	2,0	0,2	10,0	10,0
7,60		6,0	3,0	0,13	23,08	4,33
7,80	5,0	7,0	5,0	0,2	25,0	4,0
8,0		7,0	4,0	0,4	10,0	10,0
8,20		7,0	1,0	0,13	7,69	13,0
8,40		6,0	4,0	0,4	10,0	10,0
8,60		20,0	14,0	0,47	29,79	3,36
8,80		10,0	3,0	0,13	23,08	4,33
9,00		5,0	3,0	0,13	23,08	4,33
9,20		5,0	3,0	0,07	42,86	2,33
9,40		5,0	4,0	0,13	30,77	3,25
9,60		5,0	3,0	0,2	15,0	6,67
9,80		6,0	3,0	2,27	1,32	75,67
10,00		36,0	2,0	0,73	2,74	36,5
10,20		20,0	9,0	0,67	13,43	7,44
10,40		29,0	19,0	0,4	47,5	2,11
10,60	0 4,0	10,0	4,0	0,27	14,81	6,75

10,80	8,0	12,0	8,0	0,27	29,63	3,38
11,00	6,0	10,0	6,0	0,33	18,18	5,5
11,20	6,0	11,0	6,0	0,33	18,18	5,5
11,40	5,0	10,0	5,0	0,2	25,0	4,0
11,60	8,0	11,0	8,0	0,67	11,94	8,38
11,80	12,0	22,0	12,0	0,27	44,44	2,25
12,00	5,0	9,0	5,0	0,2	25,0	4,0
12,20	8,0	11,0	8,0	0,27	29,63	3,38
12,40	10,0	14,0	10,0	0,33	30,3	3,3
12,60	6,0	11,0	6,0	0,27	22,22	4,5
12,80	5,0	9,0	5,0	0,2	25,0	4,0
13,00	5,0	8,0	5,0	0,47	10,64	9,4
13,20	7,0	14,0	7,0	0,53	13,21	7,57
13,40	12,0	20,0	12,0	0,27	44,44	2,25
13,60	1,0	5,0	1,0	0,27	3,7	27,0
13,80	5,0	9,0	5,0	0,27	18,52	5,4
14,00	5,0	9,0	5,0	0,27	18,52	5,4
14,20	5,0	9,0	5,0	0,27	18,52	5,4
14,40	6,0	10,0	6,0	0,6	10,0	10,0
14,60	5,0	14,0	5,0	0,53	9,43	10,6
14,80	9,0	17,0	9,0	0,6	15,0	6,67
15,00	7,0	16,0	7,0	0,33	21,21	4,71
15,20	9,0	14,0	9,0	0,33	27,27	3,67
15,40	7,0	12,0	7,0	0,4	17,5	5,71
15,60	7,0	13,0	7,0	0,4	17,5	5,71
15,80	7,0	13,0	7,0	1,13	6,19	16,14
16,00	11,0	28,0	11,0	0,13	84,62	1,18
16,20	24,0	26,0	24,0	0,27	88,89	1,13
16,40	15,0	19,0	15,0	0,47	31,91	3,13
16,60	8,0	15,0	8,0	0,6	13,33	7,5
16,80	8,0	17,0	8,0	0,4	20,0	5,0
17,00	10,0	16,0	10,0	0,8	12,5	8,0
17,20	17,0	29,0	17,0	0,47	36,17	2,76
17,40	26,0	33,0	26,0	0,33	78,79	1,27
17,60	23,0	28,0	23,0	0,53	43,4	2,3
17,80	24,0	32,0	24,0	0,2	120,0	0,83
18,00	28,0	31,0	28,0	0,47	59,57	1,68
18,20	13,0	20,0	13,0	0,4	32,5	3,08
18,40	16,0	22,0	16,0	0,73	21,92	4,56
18,60	19,0	30,0	19,0	0,67	28,36	3,53
18,80	23,0	33,0	23,0	0,4	57,5	1,74
19,00	7,0	13,0	7,0	0,33	21,21	4,71
19,20	8,0	13,0	8,0	0,47	17,02	5,88
19,40	10,0	17,0	10,0	0,33	30,3	3,3
19,60	10,0	15,0	10,0	0,13	76,92	1,3
19,80	34,0	36,0	34,0	1,67	20,36	4,91
20,00	63,0	88,0	63,0	0,4	157,5	0,63
20,20	16,0	22,0	16,0	0,4	40,0	2,5
20,40	16,0	22,0	16,0 23,0	0,93	17,2	5,81
20,60	23,0	37,0	23,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Schmertmann 1978
0,20	Stima non eseguibile
0,40	
0,60	\mathcal{E}
0,80	
1,00	
1,20	
1,40	Argille organiche e terreni misti
1,60	Argilla inorganica molto compatta
1,80	Argilla inorganica molto compatta
2,00	Argille sabbiose e limose
2,20	Argilla inorganica molto compatta
2,40	Argilla inorganica compatta
2,60	
2,80	Argilla inorganica di media consistenza
3,00	Argilla inorganica di media consistenza

3,20	
3,40	
3,60	
3,80	Argille organiche e terreni misti
4,00	Argille organiche e terreni mist
4,20	
4,40	<u> </u>
4,60	Argille organiche e terreni mist
4,80	Sabbie Sciolte
5,00	Argilla inorganica di media consistenza
5,20	
5,40	Argille organiche e terreni mist
5,60	Argille organiche e terreni mist
5,80	
6,00	
6,20	Argille organiche e terreni mist
6,40	
6,60	Argille organiche e terreni mist
6,80	
7,00	Argille organiche e terreni mist
7,20	Argille organiche e terreni mist
7,40	Argille organiche e terreni mist
7,60	Argilla inorganica molto tener
7,80	Argilla inorganica tenera
8,00	Argille organiche e terreni mist
8,20	Argille organiche e terreni mist
8,40	Argille organiche e terreni mist
8,60	Argille sabbiose e limose
8,80	Argilla inorganica molto tener
9,00	Argilla inorganica molto tenera
9,20	Terre Limo sabbiose - Sabbie Arg Lim
9,40	
9,60	Argille organiche e terreni mist
9,80	Argille organiche e terreni mist
10,00	Argille organiche e terreni mist
10,20	
10,40	
10,60	
10,80	Argille sabbiose e limos
11,00	
11,20	Argille organiche e terreni mist
11,40	
11,60	
11,80 12,00	
12,00	
12,20	
12,60 12,80	
12,80	
13,00	
13,40 13,60	
13,80	
13,80	
14,00	
14,20	
14,40	
14,80	
15,00	
15,00 15,20	
15,20 15,40	
15,40 15,60	
15,80	
15,80	
16,00	
16,40	
16.40	Argine saddiose e limose

	16,60
Argilla inorganica di media consistenza	16,80
	17,00
Terre Limo sabbiose - Sabbie Arg Limi	17,20
Sabbie	17,40
Terre Limo sabbiose - Sabbie Arg Limi	17,60
Sabbie	17,80
Sabbie	18,00
Argille sabbiose e limose	18,20
Argilla inorganica compatta	18,40
Argille sabbiose e limose	18,60
Sabbie	18,80
Argilla inorganica di media consistenza	19,00
Argille organiche e terreni misti	19,20
Argille sabbiose e limose	19,40
Sabbie Sciolte	19,60
Argille sabbiose e limose	19,80
Sabbie	20,00
Terre Limo sabbiose - Sabbie Arg Limi	20,20
Argilla inorganica compatta	20,40
Sabbie	20,60

STIMA PARAMETRI GEOTECNICI CPT Nr.2

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsione	ion archat	u (118/0111)	,									
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk=(20)
							n and	1977				
							Powell					
							1977					
Strato 1	2,80	17,93	1,34	1,01	1,20	1,18	1,04	0,93	0,90	1,26	0,90	0,88
Strato 2	8,40	3,36	0,22	0,15	0,19	0,16	0,14	0,13	0,17	0,18	0,17	0,13
Strato 3	15,80	6,57	0,42	0,30	0,35	0,30	0,27	0,24	0,33	0,38	0,33	0,27
Strato 4	20,60	18,83	0,48	0,98	1,06	1,05	0,92	0,83	0,94	1,22	0,94	0,85

Modulo Edometrico (Kg/cm²)

	/						
	Prof. Strato	qc	fs	Mitchell &	Metodo generale	Buismann	Buismann
	(m)	(Kg/cm ²)	(Kg/cm ²)	Gardner (1975)	del modulo		Sanglerat
					edometrico		
Strato 1	2,80	17,93	1,34	89,65	46,00	107,58	53,79
Strato 2	8,40	3,36	0,22	26,88	19,66	50,40	10,08
Strato 3	15,80	6,57	0,42	52,56	33,69	98,55	19,71
Strato 4	20,60	18,83	0,48	94,15	44,49	112,98	56,49

Modulo di deformazione non drenato Eu (Kg/cm²)

Modulo di deloi mazione non di enato Ed (Ngem)											
	Prof. Strato	qc	fs	Cancelli 1980	Ladd 1977 (30)						
	(m)	(Kg/cm ²)	(Kg/cm ²)								
Strato 1	2,80	17,93	1,34	662,82	27,00						
Strato 2	8,40	3,36	0,22	94,96	5,10						
Strato 3	15,80	6,57	0,42	199,19	9,90						
Strato 4	20,60	18,83	0,48	641,17	28,20						

Peso unità di volume

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
Strato 1	2,80	17,93	1,34	Meyerhof	1,95
Strato 2	8,40	3,36	0,22	Meyerhof	1,63
Strato 3	15,80	6,57	0,42	Meyerhof	1,75
Strato 4	20,60	18,83	0,48	Meyerhof	1,95

I coo aiiica ai voiaiiic s	avaio				
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm²)	(Kg/cm²)		saturo

					(t/m³)
Strato 1	2,80	17,93	1,34	Meyerhof	2,03
Strato 2	8,40	3,36	0,22	Meyerhof	1,71
Strato 3	15,80	6,57	0,42	Meyerhof	1,83
Strato 4	20,60	18,83	0,48	Meyerhof	2,03

TERRENI INCOERENTI

Densità relativa (%)

	(, -)							
	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	2,80	17,93	1,34	36,47	44,62	45,84	37,05	57,21
Strato 2	8,40	3,36	0,22	< 5	< 5	5	5	5
Strato 3	15,80	6,57	0,42	< 5	< 5	5	5	5
Strato 4	20,60	18,83	0,48	< 5	< 5	5	10,99	5

Angolo di resistenza al taglio (°)

	I COID COILE G										
	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato	1 2,80	17,93	1,34	34,41	30,9	27,96	26,15	34,25	38,8	25,8	25,05
Strato 2	2 8,40	3,36	0,22	21,07	16,75	13,1	12,57	28,7	16,02	21,27	18,51
Strato 3	3 15,80	6,57	0,42	22,4	18	14,41	13,77	28,7	18,72	21,36	19,95
Strato 4	20,60	18,83	0,48	26,02	21,63	18,23	17,26	28,7	26,06	21,8	25,45

Modulo di Young (Kg/cm²)

T₹	toudio di Toung (ixg/ciii)					
		Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
		(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
	Strato 1	2,80	17,93	1,34	44,83	35,86	190,88
	Strato 2	8,40	3,36	0,22	8,40	6,72	51,74
	Strato 3	15,80	6,57	0,42	16,43	13,14	101,18
	Strato 4	20,60	18,83	0,48	47,07	37,66	289,98

Modulo Edometrico (Kg/cm²)

	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m) (Kg/cm²)		(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	2,80	17,93	1,34	38,77	70,33	137,57	35,86	89,65
Strato 2	8,40	3,36	0,22	13,73	13,18	10,27	6,72	26,88
Strato 3	15,80	6,57	0,42	18,87	25,77	24,02	13,14	52,56
Strato 4	20,60	18,83	0,48	24,78	73,86	114,72	37,66	94,15

Peso unità di volume

	Prof. Strato	ac	fs	Correlazione	Peso unità di volume	
	Tiol. Strato	qc	18	Correlazione		
	(m)	(Kg/cm²)	(Kg/cm²)		(t/m^3)	
Strato 1	2,80	17,93	1,34	Meyerhof	1,80	
Strato 2	8,40	3,36	0,22	Meyerhof	1,80	
Strato 3	15,80	6,57	0,42	Meyerhof	1,80	
Strato 4	20,60	18,83	0,48	Meyerhof	1,80	

	Prof. Strato	qc	qc fs		Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm²)		saturo
					(t/m³)
Strato 1	2,80	17,93	1,34	Meyerhof	2,10
Strato 2	8,40	3,36	0,22	Meyerhof	2,10
Strato 3	15,80	6,57	0,42	Meyerhof	2,10
Strato 4	20,60	18,83	0,48	Meyerhof	2,10

PROVA ... CPT Nr.3

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 17/04/2007
Profondità prova ,80 mt

Profondità (m)	Lettura punta (Kg/cm²)	Lettura laterale (Kg/cm²)	qc (Kg/cm²)	fs (Kg/cm²)	qc/fs Begemann	fs/qcx100 (Schmertmann)
0,20	0,0	0,0	0,0	0,6	0,0	
0,40	44,0	53,0	44,0	1,8	24,44	4,09
0,60	45,0	72,0	45,0	1,33	33,83	2,96
0,80	70,0	90,0	70,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Terreni coesivi ed incorenti a grana fine
0,60	Terreni incoerenti a grana grossa e fine
0,80	Sabbie metastabili

STIMA PARAMETRI GEOTECNICI CPT Nr.3

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

,	Coesione i	ion ui chai	a (IXg/CIII-	,									
		Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
		Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
		(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
						tale		Robertso	Powell				Nk=(20)
								n and	1977				
								Powell					
								1977					
	Strato 1	0.80	39.75	0.93	2.27	2.21	2,65	2.33	2.09	1.99	2.83	1.99	1.98

Modulo Edometrico (Kg/cm²)

	Prof. Strato	qc	fs	Mitchell &	Metodo generale	Buismann	Buismann
	(m)	(Kg/cm ²)	(Kg/cm ²)	Gardner (1975)	del modulo		Sanglerat
					edometrico		
Strato 1	0,80	39,75	0,93	99,38	79,50	119,25	119,25

Modulo di deformazione non drenato Eu (Kg/cm²)

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Cancelli 1980	Ladd 1977 (30)
Strato 1	0,80	39,75	0,93	1488,23	59,70

Peso unità di volume

i eso unita ui voiunie					
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
Strato 1	0.80	39.75	0.93	Meverhof	2.09

Peso unità di volume saturo

i eso ainta ai voiaine s	utui				
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	0,80	39,75	0,93	Meyerhof	2,17

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Baldi 1978 - Schmertmann 1976	Schmertmann	Harman	Lancellotta 1983	Jamiolkowski 1985
Strato 1	0,80	39,75	0,93	78,73	100	100	79,67	100

Angolo di resistenza al taglio (°)

	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	0,80	39,75	0,93	44,45	41,7	39,31	36,51	42	45	42,56	34,85

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm²)		Campanella (1983)	Ey(50)
Strato 1	0,80	39,75	0,93	99,38	79,50	159,00

Modulo Edometrico (Kg/cm²)

	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -	-		
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	0,80	39,75	0,93	80,94	155,93	319,16	79,50	119,25

Peso unità di volume

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m³)
Strato 1	0,80	39,75	0,93	Meyerhof	1,80

i cso umita ui voiume s	atuiv				
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	0.80	39.75	0.93	Meverhof	2.10

PROVA ... CPT Nr.3_1

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 17/04/2007
Profondità prova 1,00 mt

Profondità (m)	Lettura punta (Kg/cm²)	Lettura laterale (Kg/cm²)	qc (Kg/cm²)	fs (Kg/cm²)	qc/fs Begemann	fs/qcx100 (Schmertmann)
0,20	0,0	0,0	0,0	0,0		
0,40	0,0	0,0	0,0	1,27	0,0	
0,60	35,0	54,0	35,0	1,47	23,81	4,2
0,80	38,0	60,0	38,0	1,33	28,57	3,5
1,00	22,0	42,0	22,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Stima non eseguibile
0,60	Terreni coesivi ed incorenti a grana fine
0,80	Terreni coesivi ed incorenti a grana fine
1,00	Sabbie metastabili

STIMA PARAMETRI GEOTECNICI CPT Nr.3_1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

		Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
		Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
		(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
						tale		Robertso	Powell				Nk=(20)
								n and	1977				
								Powell					
								1977					
5	Strato 1	1,00	19,0	0,81	1,08	1,28	1,26	1,11	1,00	0,95	1,35	0,95	0,95

Modulo Edometrico (Kg/cm²)

	120 (126, 211)						
	Prof. Strato	qc	fs		Metodo generale	Buismann	Buismann
	(m)	(Kg/cm²)	(Kg/cm²)	Gardner (1975)	del modulo edometrico		Sanglerat
Strato 1	1,00	19,0	0,81	95,00	44,16	114,00	57,00

Modulo di deformazione non drenato Eu (Kg/cm²)

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Cancelli 1980	Ladd 1977 (30)
Strato 1	1,00	19,0	0,81	710,19	28,50

Peso unità di volume

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm²)	(Kg/cm²)		(t/m^3)
Strato 1	1,00	19,0	0,81	Meyerhof	1,96

Peso unità di volume s	aturo				
	Prof Strato	ac.	fs	Correlazione	Peso unità di volume

	(m)	(Kg/cm²)	(Kg/cm²)		saturo (t/m³)
Strato 1	1,00	19,0	0,81	Meyerhof	()

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	1,00	19,0	0,81	58,32	84,98	82,02	59,09	99,61

Angolo di resistenza al taglio (°)

	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer		Robertson	Herminier	
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	X.		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strate	1,00	19,0	0,81	41,08	38,24	35,67	33,19	39,9	45	37,52	25,53

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	1,00	19,0	0,81	47,50	38,00	110,25

Modulo Edometrico (Kg/cm²)

		Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
		(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
					da	1983 -			
					Schmertmann	Robertson and			
						Powell 1997			
Ī	Strato 1	1,00	19,0	0,81	68,42	74,53	147,99	38,00	95,00

Peso unità di volume

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
Strato 1	1,00	19,0	0,81	Meyerhof	1,80

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	1,00	19,0	0,81	Meyerhof	2,10

PROVA ... CPT Nr.3 2

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 17/04/2007
Profondità prova ,80 mt

Profondità (m)	Lettura punta (Kg/cm²)	Lettura laterale (Kg/cm²)	qc (Kg/cm²)	fs (Kg/cm²)	qc/fs Begemann	fs/qcx100 (Schmertmann)
0,20	0,0	0,0	0,0	0,93	0,0	, , , , , , , , , , , , , , , , , , , ,
0,40	50,0	64,0	50,0	1,07	46,73	2,14
0,60	34,0	50,0	34,0	0,93	36,56	2,74
0,80	20,0	34,0	20,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
0,60	Terreni incoerenti a grana grossa e fine
0,80	Sabbie metastabili

STIMA PARAMETRI GEOTECNICI CPT Nr.3_2 TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsione	non urcha	a (ixg/ciii	,									
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk=(20)
							n and	1977				
							Powell					
							1977					
Strato 1	0,80	26,0	0,73	1,49	1,63	1,73	1,53	1,37	1,30	1,85	1,30	1,30

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	0,80	26,0	0,73	67,21	96,42	92,75	68,05	100

Angolo di resistenza al taglio (°)

-		COLD COLLEGE CO.	- 									
		Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
		Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
		(m)			Mitchell					Campanell		
					1973					a 1983		
Ī	Strato 1	0,80	26,0	0,73	42,58	39,78	37,3	34,68	41,5	45	40,84	28,67

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	0,80	26,0	0,73	65,00	52,00	115,17

Modulo Edometrico (Kg/cm²)

Prof. Strato qc fs Robertson & Lunne- Kulhaw	y- Mitchell & Buisman -
--	-------------------------

	(m)	(Kg/cm²)	(Kg/cm²)	da	Christoffersen 1983 - Robertson and	,	Gardner 1975	Sanglerat
					Powell 1997			
Strato 1	0,80	26,0	0,73	77,67	101,99	205,74	52,00	130,00

Peso unità di volume

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)
Strato 1	0,80	26,0	0,73	Meyerhof	1,80

Peso unità di volume saturo

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	0,80	26,0	0,73	Meyerhof	2,10

PROVA ... CPT Nr.3_3

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 27/04/2007
Profondità prova 1,60 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	0,93	0,0	
0,40	20,0	34,0	20,0	1,6	12,5	8,0
0,60	50,0	74,0	50,0	1,07	46,73	2,14
0,80	111,0	127,0	111,0	5,53	20,07	4,98
1,00	125,0	208,0	125,0	1,6	78,13	1,28
1,20	200,0	224,0	200,0	2,0	100,0	1,0
1,40	250,0	280,0	250,0	6,67	37,48	2,67
1,60	300,0	400,0	300,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Argille sensitive
0,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
0,80	Terreni coesivi ed incorenti a grana fine
1,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,60	Sabbie metastabili

STIMA PARAMETRI GEOTECNICI CPT Nr.3_3

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	coesione non dichata (xg/cm)												
		Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
		Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
		(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
						tale		Robertso	Powell				Nk = (20)
								n and	1977				
								Powell					
								1977					
Ī	Strato 1	0,80	45,25	2,28	2,59	2,41	3,01	2,66	2,38	2,26	3,23	2,26	2,26
Ī	Strato 2	1,60	218,75	2,57	12,52	4,88	14,57	12,85	11,50	10,94	15,61	10,94	10,93

TERRENI INCOERENTI

Densità relativa (%)

		Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski	
		(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985	
					1976					
Ī	Strato 1	0,80	45,25	2,28	82,51	100	100	83,48	100	
	Strato 2	1,60	218,75	2,57	100	100	100	100	100	

Angolo di resistenza al taglio (°)

	Prof. Strato	qc (Kg/cm²)	fs (Kg/cm²)	Durgunou glu-	Caquot	Koppejan	De Beer	ann	&	Herminier	Meyerhof 1951
	(m)			Mitchell 1973					Campanell a 1983		
Strato 1	0,80	45,25	2,28	45	42,37	40,02	37,16	42	45	41,6	37,32
Strato 2	1,60	218,75	2,57	45	43,99	41,71	38,71	42	45	31,48	45

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	0,80	45,25	2,28	113,13	90,50	181,00
Strato 2	1,60	218,75	2,57	546,88	437,50	875,00

Modulo Edometrico (Kg/cm²)

-	Tourio Duomic	, , , , , , , , , , , , , , , , , , ,							
Ī		Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
		(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
					da	1983 -			
					Schmertmann	Robertson and			
						Powell 1997			
Ī	Strato 1	0,80	45,25	2,28	81,10	177,50	364,54	90,50	67,88
Ī	Strato 2	1,60	218,75	2,57	88,16	449,04	1794,61	328,12	328,12

Peso unità di volume

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)
Strato 1	0,80	45,25	2,28	Meyerhof	1,80
Strato 2	1,60	218,75	2,57	Meyerhof	1,90

Peso unità di volume saturo

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	0,80	45,25	2,28	Meyerhof	2,10
Strato 2	1,60	218,75	2,57	Meyerhof	2,20

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 27/04/2007
Profondità prova 4,40 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm ²)	(Kg/cm²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	2,93	0,0	
0,40	34,0	78,0	34,0	2,4	14,17	7,06
0,60	54,0	90,0	54,0	0,93	58,06	1,72
0,80	110,0	124,0	110,0	4,2	26,19	3,82
1,00	137,0	200,0	137,0	1,07	128,04	0,78
1,20	34,0	50,0	34,0	0,73	46,58	2,15
1,40	22,0	33,0	22,0	0,8	27,5	3,64
1,60	15,0	27,0	15,0	0,93	16,13	6,2
1,80	15,0	29,0	15,0	0,87	17,24	5,8
2,00	17,0	30,0	17,0	1,0	17,0	5,88
2,20	18,0	33,0	18,0	0,73	24,66	4,06
2,40	29,0	40,0	29,0	1,2	24,17	4,14
2,60	17,0	35,0	17,0	0,4	42,5	2,35
2,80	16,0	22,0	16,0	0,33	48,48	2,06
3,00	10,0	15,0	10,0	0,2	50,0	2,0
3,20	11,0	14,0	11,0	1,6	6,88	14,55
3,40	30,0	54,0	30,0	1,73	17,34	5,77
3,60	34,0	60,0	34,0	2,13	15,96	6,26
3,80	40,0	72,0	40,0	2,47	16,19	6,18
4,00	50,0	87,0	50,0	1,73	28,9	3,46
4,20	124,0	150,0	124,0	0,0		0,0
4,40	300,0	0,0	300,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Argille sensitive
0,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
0,80	Terreni incoerenti a grana grossa e fine
1,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,40	Terreni coesivi ed incorenti a grana fine
1,60	Argille sensitive
1,80	Argille sensitive
2,00	
2,20	Terreni coesivi ed incorenti a grana fine
2,40	Terreni coesivi ed incorenti a grana fine
2,60	
2,80	Materiali sensitivi poco coesivi a grana medio grossa
3,00	Materiali sensitivi poco coesivi a grana medio grossa

Argille sensitive	3,20
Argille sensitive	3,40
Argille sensitive	3,60
Argille sensitive	3,80
Terreni incoerenti a grana grossa e fine	4,00
Sabbie metastabili	4,20
Sabbie metastabili	4.40

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

		qc					Kjekstad.		Terzaghi	Begeman	De Beer	Baligh ed
	Strato (m)	(Kg/cm ²)	(Kg/cm ²)		Relazione Sperimen			Robertso n and		n		altri (1980)
	(111)				tale		Robertso					Nk=(20)
							n and	1977				
							Powell					
							1977					
Strato 1	1,00	67,0	2,31	3,83	3,03	4,46	3,94	3,52	3,35	4,78	3,35	3,35
Strato 2	3,80	22,0	1,08	1,23	1,41	1,44	1,27	1,13	1,10	1,54	1,10	1,08
Strato 3	4,40	158,0	0,58	9,01	4,40	10,48	9,25	8,27	7,90	11,24	7,90	7,87

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	1,00	67,0	2,31	89,13	100	100	90,15	100
Strato 2	3,80	22,0	1,08	34,18	36,76	39,14	34,74	46,72
Strato 3	4,40	158,0	0,58	84,27	97,67	96,82	85,25	86,97

Angolo di resistenza al taglio (°)

	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	1,00	67,0	2,31	45	42,74	40,4	37,51	42	45	40,4	45
Strato 2	3,80	22,0	1,08	32,82	29,08	26,06	24,41	33,15	36,69	24,44	26,88
Strato 3	4,40	158,0	0,58	40,4	36,79	34,15	31,8	41,67	44,84	34,91	45

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	1,00	67,0	2,31	167,50	134,00	268,00
Strato 2	3,80	22,0	1,08	55,00	44,00	254,95
Strato 3	4,40	158,0	0,58	395,00	316,00	676,18

Modulo Edometrico (Kg/cm²)

TITO GRADULE								
	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	1,00	67,0	2,31	82,03	262,82	543,78	113,90	100,50
Strato 2	3,80	22,0	1,08	34,97	86,30	169,53	44,00	110,00
Strato 3	4,40	158,0	0,58	89,91	329,89	1287,37	237,00	237,00

Peso unità di volume

coo anna ar voianne					
	Prof. Strato qc		fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
Strato 1	1,00	67,0	2,31	Meyerhof	1,80
Strato 2	3,80	22,0	1,08	Meyerhof	1,80
Strato 3	4,40	158,0	0,58	Meyerhof	1,90

Peso unità di volume saturo									
	Prof. Strato	ac	fs	Correlazione	Peso unità di volume				

	(m)	(Kg/cm²)	(Kg/cm²)		saturo (t/m³)
Strato 1	1,00	67,0	2,31	Meyerhof	2,10
Strato 2	3,80	22,0	1,08	Meyerhof	2,10
Strato 3	4,40	158,0	0,58	Meyerhof	2,20

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 27/04/2007
Profondità prova 20,00 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	12,0	36,0	12,0	1,47	8,16	12,25
0,40	12,0	34,0	12,0	1,93	6,22	16,08
0,60	16,0	45,0	16,0	2,2	7,27	13,75
0,80	17,0	50,0	17,0	2,07	8,21	12,18
1,00	20,0	51,0	20,0	2,07	9,66	10,35
1,20	21,0	52,0	21,0	1,93	10,88	9,19
1,40	26,0	55,0	26,0	1,93	13,47	7,42
1,60	29,0	58,0	29,0	2,0	14,5	6,9
1,80	30,0	60,0	30,0	1,87	16,04	6,23
2,00	33,0	61,0	33,0	2,4	13,75	7,27
2,20	31,0	67,0	31,0	2,4	12,92	7,74
2,40	27,0	63,0	27,0	1,87	14,44	6,93
2,60	30,0	58,0	30,0	1,93	15,54	6,43
2,80	33,0	62,0	33,0	1,93	17,1	5,85
3,00	29,0	58,0	29,0	1,6	18,13	5,52
3,20	31,0	55,0	31,0	1,8	17,22	5,81
3,40	30,0	57,0	30,0	1,67	17,96	5,57
3,60	36,0	61,0	36,0	1,93	18,65	5,36
3,80	34,0	63,0	34,0	2,0	17,0	5,88
4,00	24,0	54,0	24,0	1,67	14,37	6,96
4,20	17,0	42,0	17,0	2,27	7,49	13,35
4,40	14,0	48,0	14,0	0,73	19,18	5,21
4,60	13,0	24,0	13,0	0,67	19,4	5,15
4,80	9,0	19,0	9,0	0,53	16,98	5,89
5,00	8,0	16,0	8,0	0,27	29,63	3,38
5,20	3,0	7,0	3,0	0,27	11,11	9,0
5,40	5,0	9,0	5,0	0,4	12,5	8,0
5,60	6,0	12,0	6,0	0,33	18,18	5,5
5,80	4,0	9,0	4,0	0,4	10,0	10,0
6,00	7,0	13,0	7,0	0,33	21,21	4,71
6,20	10,0	15,0	10,0	0,4	25,0	4,0
6,40	22,0	28,0	22,0	0,47	46,81	2,14
6,60	23,0	30,0	23,0	0,2	115,0	0,87
6,80	7,0	10,0	7,0	0,33	21,21	4,71
7,00	7,0	12,0	7,0	0,33	21,21	4,71
7,20	10,0	15,0	10,0	0,47	21,28	4,7
7,40	10,0	17,0	10,0	0,33	30,3	3,3
7,60	10,0	15,0	10,0	0,2	50,0	2,0

7,80	9,0	12,0	9,0	0,4	22,5	4,44
8,00	7,0	13,0	7,0	0,33	21,21	4,71
8,20	10,0	15,0	10,0	0,47	21,28	4,7
8,40	3,0	10,0	3,0	0,67	4,48	22,33
8,60	5,0	15,0	5,0	0,87	5,75	17,4
8,80 9,00	27,0 30,0	40,0 47,0	27,0 30,0	1,13	23,89	4,19
9,00	29,0	40,0	29,0	0,73 1,0	41,1 29,0	2,43
9,20	22,0	37,0	22,0	1,13	19,47	3,45 5,14
9,60	24,0	41,0	24,0	0,4	60,0	1,67
9,80	16,0	22,0	16,0	0,73	21,92	4,56
10,00	19,0	30,0	19,0	0,4	47,5	2,11
10,20	7,0	13,0	7,0	0,33	21,21	4,71
10,40	8,0	13,0	8,0	0,47	17,02	5,88
10,60	10,0	17,0	10,0	0,6	16,67	6,0
10,80	8,0	17,0	8,0	0,33	24,24	4,13
11,00	7,0	12,0	7,0	0,4	17,5	5,71
11,20	7,0	13,0	7,0	1,0	7,0	14,29
11,40	11,0	26,0	11,0	1,0	11,0	9,09
11,60	10,0	25,0	10,0	1,0	10,0	10,0
11,80 12,00	15,0	30,0	15,0 15,0	1,13 0,13	13,27	7,53
12,20	15,0 10,0	32,0 12,0	10,0	0,13	115,38 12,5	0,87 8,0
12,40	10,0	22,0	10,0	0,73	13,7	7,3
12,40	9,0	20,0	9,0	1,0	9,0	11,11
12,80	8,0	23,0	8,0	0,53	15,09	6,63
13,00	23,0	31,0	23,0	0,67	34,33	2,91
13,20	34,0	44,0	34,0	1,0	34,0	2,94
13,40	41,0	56,0	41,0	0,27	151,85	0,66
13,60	43,0	47,0	43,0	2,87	14,98	6,67
13,80	25,0	68,0	25,0	0,93	26,88	3,72
14,00	16,0	30,0	16,0	0,07	228,57	0,44
14,20	50,0	51,0	50,0	0,67	74,63	1,34
14,40	40,0	50,0	40,0	0,67	59,7	1,68
14,60	12,0	22,0	12,0	1,0	12,0	8,33
14,80 15,00	14,0 15,0	29,0 30,0	14,0 15,0	1,0 1,0	14,0 15,0	7,14 6,67
15,20	13,0	28,0	13,0	0,73	17,81	5,62
15,40	40,0	51,0	40,0	0,73	50,0	2,0
15,60	40,0	52,0	40,0	1,47	27,21	3,68
15,80	33,0	55,0	33,0	0,8	41,25	2,42
16,00	20,0	32,0	20,0	0,73	27,4	3,65
16,20	18,0	29,0	18,0	0,8	22,5	4,44
16,40	13,0	25,0	13,0	0,73	17,81	5,62
16,60	13,0	24,0	13,0	0,6	21,67	4,62
16,80	13,0	22,0	13,0	0,87	14,94	6,69
17,00	21,0	34,0	21,0	0,8	26,25	3,81
17,20	16,0	28,0	16,0	0,8	20,0	5,0
17,40	10,0 30,0	22,0	10,0	0,47	21,28	4,7
17,60 17,80	35,0	37,0 50,0	30,0 35,0	1,0 0,93	30,0 37,63	3,33 2,66
18,00	38,0	52,0	38,0	1,33	28,57	3,5
18,20	40,0	60,0	40,0	1,13	35,4	2,83
18,40	20,0	37,0	20,0	1,13	16,67	6,0
18,60	22,0	40,0	22,0	0,6	36,67	2,73
18,80	13,0	22,0	13,0	0,87	14,94	6,69
19,00	14,0	27,0	14,0	0,27	51,85	1,93
19,20	18,0	22,0	18,0	0,67	26,87	3,72
19,40	20,0	30,0	20,0	0,47	42,55	2,35
19,60	20,0	27,0	20,0	0,6	33,33	3,0
19,80	20,0	29,0	20,0	0,93	21,51	4,65
20,00	20,0	34,0	20,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Argille sensitive
0,40	Argille sensitive
0,60	Argille sensitive

0,80	Argille sensitive
1,00	Argille sensitive
1,20	Argille sensitive
1,40	Argille sensitive
1,60	Argille sensitive
1,80	Argille sensitive
2,00	Argille sensitive
2,20	Argille sensitive
2,40	Argille sensitive
2,60	Argille sensitive
2,80	Argille sensitive
3,00	Argille sensitive
3,20	Argille sensitive
3,40	Argille sensitive
3,60	
	Argille sensitive
3,80	Argille sensitive
4,00	Argille sensitive
4,20	Argille sensitive
4,40	Argille sensitive
4,60	
	Argille sensitive
4,80	Argille sensitive
5,00	Materiali sensitivi coesivi ed incoerent
5,20	Torba e Argille organiche
5,40	Torba e Argille organiche
5,60	Argille sensitive
5,80	Torba e Argille organiche
6,00	Argille sensitive
6,20	Argille sensitive
6,40	Materiali sensitivi poco coesivi a grana medio grossa
6,60	Sabbie metastabil
6,80	Argille sensitive
7,00	Argille sensitive
7,20	Argille sensitive
7,40	Materiali sensitivi coesivi ed incoerenti
7,60	Materiali sensitivi poco coesivi a grana medio grossa
7,80	Argille sensitive
8,00	Argille sensitive
8,20	Argille sensitive
8,40	Torba e Argille organiche
8,60	Torba e Argille organiche
8,80	Terreni coesivi ed incorenti a grana fine
9,00	Terreni incoerenti a grana grossa e fine
	Terreni incoerenti a grana grossa e fine
9,20	Terreni coesivi ed incorenti a grana fine
9,40	Argille sensitive
9,60	Sabbie metastabil
9,80	Argille sensitive
10,00	Materiali sensitivi poco coesivi a grana medio grossa
10,20	Argille sensitive
10,40	Argille sensitive
10,60	Argille sensitive
10,80	Argille sensitive
11,00	Argille sensitive
11,20	Torba e Argille organiche
11,40	Argille sensitive
11,60	Argille sensitive
11,80	Argille sensitive
12,00	Sabbie metastabil
12,20	Argille sensitive
12,40	Argille sensitive
12,60	Argille sensitive
12,80	Argille sensitive
13,00	Terreni incoerenti a grana grossa e fine
13,20	Terreni incoerenti a grana grossa e fine
13,40	Sabbie metastabil
13,60	Argille sensitive
13,80	Terreni coesivi ed incorenti a grana fine
14,00	Sabbie metastabili

14,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,60	Argille sensitive
14,80	Argille sensitive
15,00	Argille sensitive
15,20	Argille sensitive
15,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
15,60	Terreni coesivi ed incorenti a grana fine
15,80	Terreni incoerenti a grana grossa e fine
16,00	Terreni coesivi ed incorenti a grana fine
16,20	Argille sensitive
16,40	Argille sensitive
16,60	Argille sensitive
16,80	Argille sensitive
17,00	Terreni coesivi ed incorenti a grana fine
17,20	Argille sensitive
17,40	Argille sensitive
17,60	Terreni coesivi ed incorenti a grana fine
17,80	Terreni incoerenti a grana grossa e fine
18,00	Terreni coesivi ed incorenti a grana fine
18,20	Terreni incoerenti a grana grossa e fine
18,40	Argille sensitive
18,60	Terreni incoerenti a grana grossa e fine
18,80	Argille sensitive
19,00	Materiali sensitivi poco coesivi a grana medio grossa
19,20	Terreni coesivi ed incorenti a grana fine
19,40	Materiali sensitivi poco coesivi a grana medio grossa
19,60	Terreni coesivi ed incorenti a grana fine
19,80	Argille sensitive
20,00	Sabbie metastabili

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsione		ia (Kg/Ciii-	1					1				1
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk=(20)
							n and	1977				
							Powell					
							1977					
Strato 1	4,40	25,09	1,89	1,41	1,56	1,64	1,45	1,30	1,25	1,76	1,25	1,23
Strato 2	6,20	7,22	0,4	0,36	0,47	0,41	0,36	0,33	0,36	0,45	0,36	0,31
Strato 3	6,80	17,33	0,33	0,93	1,10	1,07	0,95	0,85	0,87	1,16	0,87	0,81
Strato 4	8,60	7,89	0,45	0,39	0,49	0,43	0,38	0,34	0,39	0,48	0,39	0,34
Strato 5	9,80	24,67	0,85	1,34	1,46	1,53	1,35	1,21	1,23	1,67	1,23	1,17
Strato 6	13,00	11,06	0,66	0,55	0,65	0,59	0,52	0,47	0,55	0,69	0,55	0,48
Strato 7	14,40	35,57	0,93	1,94	1,90	2,20	1,94	1,74	1,78	2,42	1,78	1,70
Strato 8	15,20	13,5	0,93	0,67	0,76	0,71	0,63	0,56	0,68	0,84	0,68	0,59
Strato 9	15,80	37,67	1,02	2,05	1,97	2,31	2,04	1,83	1,88	2,56	1,88	1,79
Strato 10	17,80	18,9	0,77	0,97	1,06	1,05	0,92	0,83	0,94	1,21	0,95	0,85
Strato 11	18,20	39,0	1,23	2,11	1,99	2,37	2,09	1,87	1,95	2,64	1,95	1,85
Strato 12	20,00	18,56	0,62	0,94	1,01	0,99	0,88	0,78	0,93	1,17	0,93	0,82

TERRENI INCOERENTI

Densità relativa (%)

_	Jensila i Ciauva	a (/0)							
		Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
		(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985
					1976				
Ī	Strato 1	4,40	25,09	1,89	38,26	42,23	44,24	38,85	51,18
Ī	Strato 2	6,20	7,22	0,4	< 5	< 5	5	5	5
L	Strato 3	6,80	17,33	0,33	15,6	5,7	10,97	16	10,55
	Strato 4	8,60	7,89	0,45	< 5	< 5	5	5	5
Ī	Strato 5	9,80	24,67	0,85	22,83	13,31	18,36	23,29	11,12
Ī	Strato 6	13,00	11,06	0,66	< 5	< 5	5	5	5

Strato 7	14,40	35,57	0,93	29,29	19,25	24,26	29,81	10,24
Strato 8	15,20	13,5	0,93	< 5	< 5	5	5	5
Strato 9	15,80	37,67	1,02	29,49	18,64	23,81	30,01	8,21
Strato 10	17,80	18,9	0,77	< 5	< 5	5	9,3	5
Strato 11	18,20	39,0	1,23	< 5	16,61	22,06	29,25	5
Strato 12	20,00	18,56	0,62	< 5	< 5	5	7,25	5

Angolo di resistenza al taglio (°)

	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	4,40	25,09	1,89	33,56	29,86	26,87	25,15	33,91	37,6	25,01	28,27
Strato 2	6,20	7,22	0,4	24,18	19,92	16,43	15,61	28,7	22,7	21,55	20,24
Strato 3	6,80	17,33	0,33	27,94	23,78	20,49	19,32	28,8	29,84	22,23	24,78
Strato 4	8,60	7,89	0,45	23,76	19,44	15,92	15,15	28,7	21,71	21,5	20,54
Strato 5	9,80	24,67	0,85	28,75	24,55	21,3	20,06	29,86	30,91	22,44	28,08
Strato 6	13,00	11,06	0,66	24,25	19,86	16,37	15,56	28,7	22,58	21,56	21,97
Strato 7	14,40	35,57	0,93	29,26	24,99	21,76	20,48	30,69	31,5	22,58	32,97
Strato 8	15,20	13,5	0,93	24,32	19,87	16,38	15,57	28,7	22,6	21,57	23,06
Strato 9	15,80	37,67	1,02	29,08	24,78	21,53	20,28	30,61	31,21	22,52	33,91
Strato 10	17,80	18,9	0,77	25,47	21,03	17,6	16,68	28,7	24,9	21,72	25,49
Strato 11	18,20	39,0	1,23	28,69	24,34	21,08	19,86	30,33	30,62	22,4	34,51
Strato 12	20,00	18,56	0,62	24,91	20,41	16,95	16,09	28,7	23,68	21,65	25,33

Modulo di Young (Kg/cm²)

Modulo di Toulig (ixg/ciii)					
	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	4,40	25,09	1,89	62,73	50,18	274,29
Strato 2	6,20	7,22	0,4	18,05	14,44	111,19
Strato 3	6,80	17,33	0,33	43,32	34,66	265,43
Strato 4	8,60	7,89	0,45	19,72	15,78	121,51
Strato 5	9,80	24,67	0,85	61,68	49,34	355,32
Strato 6	13,00	11,06	0,66	27,65	22,12	170,32
Strato 7	14,40	35,57	0,93	88,92	71,14	486,95
Strato 8	15,20	13,5	0,93	33,75	27,00	207,90
Strato 9	15,80	37,67	1,02	94,17	75,34	518,46
Strato 10	17,80	18,9	0,77	47,25	37,80	291,06
Strato 11	18,20	39,0	1,23	97,50	78,00	546,27
Strato 12	20,00	18,56	0,62	46,40	37,12	285,82

Modulo Edometrico (Kg/cm²)

Trouble Education	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
	,	()	()	da	1983 -	J		S
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	4,40	25,09	1,89	39,26	98,42	195,11	50,18	125,45
Strato 2	6,20	7,22	0,4	15,15	28,32	41,87	14,44	57,76
Strato 3	6,80	17,33	0,33	17,12	67,98	122,62	34,66	86,65
Strato 4	8,60	7,89	0,45	17,42	30,95	42,23	15,78	63,12
Strato 5	9,80	24,67	0,85	26,00	96,77	177,63	49,34	123,35
Strato 6	13,00	11,06	0,66	21,30	43,38	61,11	22,12	55,30
Strato 7	14,40	35,57	0,93	35,72	139,53	259,07	71,14	106,71
Strato 8	15,20	13,5	0,93	25,08	52,96	74,96	27,00	67,50
Strato 9	15,80	37,67	1,02	37,36	147,77	273,10	75,34	113,01
Strato 10	17,80	18,9	0,77	27,49	74,14	115,91	37,80	94,50
Strato 11	18,20	39,0	1,23	38,60	152,98	279,61	78,00	117,00
Strato 12	20,00	18,56	0,62	30,06	72,80	109,05	37,12	92,80

Peso unità di volume

coo anna ar voianic					
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
Strato 1	4,40	25,09	1,89	Meyerhof	1,80
Strato 2	6,20	7,22	0,4	Meyerhof	1,80
Strato 3	6,80	17,33	0,33	Meyerhof	1,80
Strato 4	8,60	7,89	0,45	Meyerhof	1,80

Strato 5	9,80	24,67	0,85	Meyerhof	1,80
Strato 6	13,00	11,06	0,66	Meyerhof	1,80
Strato 7	14,40	35,57	0,93	Meyerhof	1,80
Strato 8	15,20	13,5	0,93	Meyerhof	1,80
Strato 9	15,80	37,67	1,02	Meyerhof	1,80
Strato 10	17,80	18,9	0,77	Meyerhof	1,80
Strato 11	18,20	39,0	1,23	Meyerhof	1,80
Strato 12	20,00	18,56	0,62	Meyerhof	1,80

Peso unità di volume saturo

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	4,40	25,09	1,89	Meyerhof	2,10
Strato 2	6,20	7,22	0,4	Meyerhof	2,10
Strato 3	6,80	17,33	0,33	Meyerhof	2,10
Strato 4	8,60	7,89	0,45	Meyerhof	2,10
Strato 5	9,80	24,67	0,85	Meyerhof	2,10
Strato 6	13,00	11,06	0,66	Meyerhof	2,10
Strato 7	14,40	35,57	0,93	Meyerhof	2,10
Strato 8	15,20	13,5	0,93	Meyerhof	2,10
Strato 9	15,80	37,67	1,02	Meyerhof	2,10
Strato 10	17,80	18,9	0,77	Meyerhof	2,10
Strato 11	18,20	39,0	1,23	Meyerhof	2,10
Strato 12	20,00	18,56	0,62	Meyerhof	2,10

PROVA ... CPT Nr.5

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 30/04/2007
Profondità prova 1,20 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	34,0	49,0	34,0	3,33	10,21	9,79
0,40	54,0	104,0	54,0	6,73	8,02	12,46
0,60	152,0	253,0	152,0	2,67	56,93	1,76
0,80	280,0	320,0	280,0	6,0	46,67	2,14
1,00	300,0	390,0	300,0	0,0		0,0
1,20	310,0	0,0	310,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Argille sensitive
0,40	Argille sensitive
0,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
0,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,00	Sabbie metastabili
1,20	Sabbie metastabili

STIMA PARAMETRI GEOTECNICI CPT Nr.5

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

		··· (8,	,									
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk = (20)
							n and	1977				
							Powell					
							1977					
Strato 1	1,20	188,33	3,12	10,78	4,68	12,55	11,07	9,90	9,42	13,44	9,42	9,41

TERRENI INCOERENTI

Delisita Telativa (70)												
	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski				

	(m)	(Kg/cm²)	(Kg/cm²)	Schmertmann 1976			1983	1985
Strato 1	1,20	188,33	3,12	100	100	100	100	100

Angolo di resistenza al taglio (°)

	Prof. Strato	qc (Kg/cm²)	fs (Kg/cm²)	Durgunou glu-	Caquot	Koppejan	De Beer	Schmertm ann	Robertson &	Herminier	Meyerhof 1951
	(m)	(Kg/ciii)	(Kg/cm)	Mitchell					Campanell		1)31
				1973					a 1983		
Strato 1	1,20	188,33	3,12	45	45	43,41	40,26	42	45	15	45

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	1,20	188,33	3,12	470,83	376,66	753,32

Modulo Edometrico (Kg/cm²)

	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	1,20	188,33	3,12	86,26	389,38	1544,33	282,49	282,49

Peso unità di volume

i coo ama ar voidinc					
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm²)	(Kg/cm ²)		(t/m^3)
Strato 1	1,20	188,33	3,12	Meyerhof	1,90

Peso unità di volume saturo

i coo aiiita ai voiaiiic o	atui				
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	1,20	188,33	3,12	Meyerhof	2,20

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 02/05/2007
Profondità prova 11,60 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm²)	Begemann	(Schmertmann)
0,20	29,0	31,0	29,0	1,0	29,0	3,45
0,40	21,0	36,0	21,0	1,2	17,5	5,71
0.60	17,0	35,0	17,0	0,73	23,29	4,29
0,80	19,0	30,0	19,0	1,53	12,42	8,05
1,00	13,0	36,0	13,0	1,2	10,83	9,23
1,20	81,0	99,0	81,0	4,87	16,63	6,01
1,40	71,0	144,0	71,0	3,0	23,67	4,23
1,60	67,0	112,0	67,0	1,8	37,22	2,69
1,80	75,0	102,0	75,0	4,27	17,56	5,69
2,00	75,0	139,0	75,0	3,6	20,83	4,8
2,20	73,0	127,0	73,0	3,67	19,89	5,03
2,40	70,0	125,0	70,0	3,67	19,07	5,24
2,60	71,0	126,0	71,0	3,47	20,46	4,89
2,80	81,0	133,0	81,0	2,2	36,82	2,72
3,00	66,0	99,0	66,0	1,0	66,0	1,52
3,20	46,0	61,0	46,0	0,93	49,46	2,02
3,40	24,0	38,0	24,0	1,27	18,9	5,29
3,60	44,0	63,0	44,0	1,27	34,65	2,89
3,80	92,0	111,0	92,0	3,73	24,66	4,05
4,00	22,0	78,0	22,0	0,87	25,29	3,95
4,20	21,0	34,0	21,0	5,6	3,75	26,67
4,40	11,0	95,0	11,0	0,27	40,74	2,45
4,60	13,0	17,0	13,0	0,27	48,15	2,08
4,80	16,0	20,0	16,0	0,2	80,0	1,25
5,00	15,0	18,0	15,0	0,4	37,5	2,67
5,20	17,0	23,0	17,0	0,33	51,52	1,94
5,40	11,0	16,0	11,0	1,07	10,28	9,73
5,60	17,0	33,0	17,0	0,93	18,28	5,47
5,80	10,0	24,0	10,0	1,73	5,78	17,3

6,00	14,0	40,0	14,0	0,47	29,79	3,36
6,20	16,0	23,0	16,0	0,4	40,0	2,5
6,40	18,0	24,0	18,0	0,53	33,96	2,94
6,60	34,0	42,0	34,0	1,0	34,0	2,94
6,80	43,0	58,0	43,0	1,0	43,0	2,33
7,00	55,0	70,0	55,0	1,0	55,0	1,82
7,20	43,0	58,0	43,0	1,87	22,99	4,35
7,40	46,0	74,0	46,0	0,13	353,85	0,28
7,60	95,0	97,0	95,0	1,73	54,91	1,82
7,80	50,0	76,0	50,0	0,87	57,47	1,74
8,00	43,0	56,0	43,0	1,27	33,86	2,95
8,20	17,0	36,0	17,0	1,27	13,39	7,47
8,40	18,0	37,0	18,0	1,0	18,0	5,56
8,60	20,0	35,0	20,0	1,07	18,69	5,35
8,80	22,0	38,0	22,0	0,87	25,29	3,95
9,00	37,0	50,0	37,0	1,0	37,0	2,7
9,20	37,0	52,0	37,0	1,13	32,74	3,05
9,40	38,0	55,0	38,0	1,47	25,85	3,87
9,60	50,0	72,0	50,0	1,67	29,94	3,34
9,80	52,0	77,0	52,0	1,0	52,0	1,92
10,00	40,0	55,0	40,0	1,07	37,38	2,68
10,20	43,0	59,0	43,0	1,2	35,83	2,79
10,40	44,0	62,0	44,0	1,33	33,08	3,02
10,60	45,0	65,0	45,0	0,8	56,25	1,78
10,80	78,0	90,0	78,0	0,53	147,17	0,68
11,00	82,0	90,0	82,0	0,87	94,25	1,06
11,20	84,0	97,0	84,0	1,6	52,5	1,9
11,40	90,0	114,0	90,0	1,67	53,89	1,86
11,60	92,0	117,0	92,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0.20	Terreni coesivi ed incorenti a grana fine
0,40	Argille sensitive
0,60	Argille sensitive
0,80	Argille sensitive
1,00	Argille sensitive
1,20	Argille sensitive
1,40	Terreni coesivi ed incorenti a grana fine
1,60	Terreni incoerenti a grana grossa e fine
1,80	Argille sensitive
2,00	Terreni coesivi ed incorenti a grana fine
2,20	Terreni coesivi ed incorenti a grana fine
2,40	Argille sensitive
2,60	Terreni coesivi ed incorenti a grana fine
2,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
3,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
3,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
3,40	Argille sensitive
3,60	Terreni incoerenti a grana grossa e fine
3,80	Terreni coesivi ed incorenti a grana fine
4,00	Terreni coesivi ed incorenti a grana fine
4,20	Argille sensitive
4,40	Materiali sensitivi coesivi ed incoerenti
4,60	Materiali sensitivi poco coesivi a grana medio grossa
4,80	Sabbie metastabili
5,00	Materiali sensitivi coesivi ed incoerenti
5,20	Materiali sensitivi poco coesivi a grana medio grossa
5,40	Argille sensitive
5,60	Argille sensitive
5,80	Argille sensitive
6,00	Materiali sensitivi coesivi ed incoerenti
6,20	Materiali sensitivi poco coesivi a grana medio grossa
6,40	Terreni coesivi ed incorenti a grana fine
6,60	Terreni incoerenti a grana grossa e fine
6,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,20	Terreni coesivi ed incorenti a grana fine

7,40	Sabbie metastabili
7,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,00	Terreni incoerenti a grana grossa e fine
8,20	Argille sensitive
8,40	Argille sensitive
8,60	Argille sensitive
8,80	Terreni coesivi ed incorenti a grana fine
9,00	Terreni incoerenti a grana grossa e fine
9,20	Terreni incoerenti a grana grossa e fine
9,40	Terreni coesivi ed incorenti a grana fine
9,60	Terreni incoerenti a grana grossa e fine
9,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,00	Terreni incoerenti a grana grossa e fine
10,20	Terreni incoerenti a grana grossa e fine
10,40	Terreni incoerenti a grana grossa e fine
10,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,60	Sabbie metastabili

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsione	non archa	m (115/cm	,									
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk = (20)
							n and	1977				
							Powell					
							1977					
Strato 1	1,00	19,8	1,13	1,13	1,32	1,31	1,16	1,04	0,99	1,41	0,99	0,99
Strato 2	3,00	73,0	3,16	4,16	3,16	4,84	4,27	3,82	3,65	5,18	3,65	3,63
Strato 3	3,60	38,0	1,16	2,14	2,11	2,49	2,19	1,96	1,90	2,66	1,90	1,87
Strato 4	3,80	92,0	3,73	5,22	3,54	6,08	5,37	4,80	4,60	6,52	4,60	4,56
Strato 5	6,60	16,79	1,01	0,90	1,08	1,05	0,92	0,83	0,84	1,12	0,84	0,79
Strato 6	7,80	55,33	1,1	3,08	2,65	3,59	3,17	2,83	2,77	3,85	2,77	2,69
Strato 7	10,60	36,14	1,15	1,96	1,97	2,28	2,02	1,80	1,81	2,45	1,81	1,71

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	1,00	19,8	1,13	52,87	73,96	72,23	53,59	87,44
Strato 2	3,00	73,0	3,16	69,44	82,89	82,34	70,3	83,47
Strato 3	3,60	38,0	1,16	43,54	45,08	47,47	44,18	49,93
Strato 4	3,80	92,0	3,73	67,04	74,36	75,1	67,88	71,99
Strato 5	6,60	16,79	1,01	14,19	< 5	9,03	14,58	14,15
Strato 6	7,80	55,33	1,1	43,61	38,76	42,43	44,25	39,31
Strato 7	10,60	36,14	1,15	27,97	16,47	21,81	28,48	19,97
Strato 8	11,60	85,2	0,93	49,62	42,71	46,67	50,31	39,06

Angolo di resistenza al taglio (°)

	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	1,00	19,8	1,13	39,18	36,13	33,46	31,17	38,35	44,22	33,13	25,89
Strato 2	3,00	73,0	3,16	38,95	35,44	32,74	30,51	39,6	43,56	32,19	45
Strato 3	3,60	38,0	1,16	33,49	29,64	26,64	24,94	34,31	37,35	24,9	34,06
Strato 4	3,80	92,0	3,73	37,22	33,46	30,65	28,6	38,41	41,57	28,98	45
Strato 5	6,60	16,79	1,01	27,63	23,45	20,14	19	28,7	29,37	22,16	24,54
Strato 6	7,80	55,33	1,1	31,94	27,8	24,71	23,18	33,43	35,14	23,77	41,84

Strato 7	10,60	36,14	1,15	28,77	24,45	21,19	19,96	30,31	30,77	22,45	33,23
Strato 8	11,60	85,2	0,93	32,03	27,76	24,66	23,13	33,98	35,08	23,77	45

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	1,00	19,8	1,13	49,50	39,60	141,07
Strato 2	3,00	73,0	3,16	182,50	146,00	441,88
Strato 3	3,60	38,0	1,16	95,00	76,00	402,44
Strato 4	3,80	92,0	3,73	230,00	184,00	651,07
Strato 5	6,60	16,79	1,01	41,98	33,58	258,57
Strato 6	7,80	55,33	1,1	138,33	110,66	627,93
Strato 7	10,60	36,14	1,15	90,35	72,28	506,81
Strato 8	11,60	85,2	0,93	213,00	170,40	926,53

Modulo Edometrico (Kg/cm²)

Widdio Eddin	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	1,00	19,8	1,13	60,17	77,67	154,29	39,60	99,00
Strato 2	3,00	73,0	3,16	72,53	286,35	590,58	124,10	109,50
Strato 3	3,60	38,0	1,16	44,90	149,06	299,51	76,00	114,00
Strato 4	3,80	92,0	3,73	70,64	360,88	744,31	156,40	,
Strato 5	6,60	16,79	1,01	16,99	65,86	121,43	33,58	83,95
Strato 6	7,80	55,33	1,1	49,46	217,04	436,11	94,06	83,00
Strato 7	10,60	36,14	1,15	36,13	141,76	274,37	72,28	108,42
Strato 8	11,60	85,2	0,93	62,98	334,21	675,84	144,84	127,80

Peso unità di volume

i cso unita ui voiunic	eso unita di volune											
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume							
	(m)	(Kg/cm²)	(Kg/cm²)		(t/m^3)							
Strato 1	1,00	19,8	1,13	Meyerhof	1,80							
Strato 2	3,00	73,0	3,16	Meyerhof	1,80							
Strato 3	3,60	38,0	1,16	Meyerhof	1,80							
Strato 4	3,80	92,0	3,73	Meyerhof	1,80							
Strato 5	6,60	16,79	1,01	Meyerhof	1,80							
Strato 6	7,80	55,33	1,1	Meyerhof	1,80							
Strato 7	10,60	36,14	1,15	Meyerhof	1,80							
Strato 8	11,60	85,2	0,93	Meyerhof	1,90							

Peso unità di volume saturo

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm²)	(Kg/cm²)		saturo
					(t/m^3)
Strato 1	1,00	19,8	1,13	Meyerhof	2,10
Strato 2	3,00	73,0	3,16	Meyerhof	2,10
Strato 3	3,60	38,0	1,16	Meyerhof	2,10
Strato 4	3,80	92,0	3,73	Meyerhof	2,10
Strato 5	6,60	16,79	1,01	Meyerhof	2,10
Strato 6	7,80	55,33	1,1	Meyerhof	2,10
Strato 7	10,60	36,14	1,15	Meyerhof	2,10
Strato 8	11,60	85,2	0,93	Meyerhof	

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 02/05/2007
Profondità prova 15,20 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)	(Kg/cm²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	0,0		
0,40	0,0	0,0	0,0	0,33	0,0	
0,60	59,0	64,0	59,0	0,73	80,82	1,24
0,80	46,0	57,0	46,0	-0,13	-353,85	-0,28
1,00	72,0	70,0	72,0	2,67	26,97	3,71
1,20	33,0	73,0	33,0	0,33	100,0	1,0
1,40	67,0	72,0	67,0	2,27	29,52	3,39
1,60	54,0	88,0	54,0	4,0	13,5	7,41
1,80	,	120,0	60,0	4,87	12,32	8,12
2,00		115,0	42,0	4,27	9,84	10,17
2,20		101,0	37,0	3,8	9,74	10,27
2,40	27,0	84,0	27,0	2,6	10,38	9,63
2,60		62,0	23,0	1,13	20,35	4,91
2,80		57,0	40,0	1,47	27,21	3,68
3,00		62,0	40,0	0,87	45,98	2,18
3,20		47,0	34,0	0,87	39,08	2,56
3,40		39,0	26,0	0,73	35,62	2,81
3,60		40,0	29,0	0,53	54,72	1,83
3,80		39,0	31,0	0,6	51,67	1,94
4,00		40,0	31,0	0,47	65,96	1,52
4,20		46,0	39,0	0,53	73,58	1,36
4,40		46,0	38,0	0,87	43,68	2,29
4,60	,	54,0	41,0	0,73	56,16	1,78
4,80		61,0	50,0	0,6		1,2
5,00	45,0	54,0	45,0	0,6	75,0	1,33

5,20	47,0	56,0	47,0	0,87	54,02	1,85
5,40	47,0	60,0	47,0	0,33	142,42	0,7
5,60	64,0	69,0	64,0	0,07	914,29	0,11
5,80	68,0	69,0	68,0	0,47	144,68	0,69
6,00	78,0	85,0	78,0	0,47	165,96	0,6
6,20	66,0	73,0	66,0	0,6	110,0	0,91
6,40	63,0	72,0	63,0	0,87	72,41	1,38
6,60	67,0	80,0	67,0	0,73	91,78	1,09
6,80	64,0	75,0	64,0	0,93	68,82	1,45
7,00	67,0	81,0	67,0	0,87	77,01	1,3
7,20	72,0	85,0	72,0	0,93	77,42	1,29
7,40	80,0	94,0	80,0	1,13	70,8	1,41
7,60	90,0	107,0	90,0	0,93	96,77	1,03
7,80	89,0	103,0	89,0	1,0	89,0	1,12
8,00	85,0	100,0	85,0	1,4	60,71	1,65
8,20	89,0	110,0	89,0	1,07	83,18	1,2
8,40	94,0	110,0	94,0	1,27	74,02	1,35
8,60	82,0	101,0	82,0	1,53	53,59	1,87
8,80	82,0	105,0	82,0	0,93	88,17	1,13
9,00	85,0	99,0	85,0	1,0	85,0	1,18
9,20	86,0	101,0	86,0	1,13	76,11	1,31
9,40	83,0	100,0	83,0	1,07	77,57	1,29
9,60	71,0	87,0	71,0	1,2	59,17	1,69
9,80	97,0	115,0	97,0	0,67	144,78	0,69
10,00	97,0	107,0	97,0	1,33	72,93	1,37
10,20	95,0	115,0	95,0	1,27	74,8	1,34
10,40	97,0	116,0	97,0	1,2	80,83	1,24
10,60	111,0	129,0	111,0	1,13	98,23	1,02
10,80	113,0	130,0	113,0	1,27	88,98	1,12
11,00	117,0	136,0	117,0	1,6	73,13	1,37
11,20	119,0	143,0	119,0	0,8	148,75	0,67
11,40	122,0	134,0	122,0	1,73	70,52	1,42
11,60	116,0	142,0	116,0	1,67	69,46	1,44
11,80	115,0	140,0	115,0	1,4	82,14	1,22
12,00	120,0	141,0	120,0	2,07	57,97	1,73
12,20	102,0	133,0	102,0	1,2	85,0	1,18
12,40	127,0	145,0	127,0	1,27	100,0	1,0
12,60	122,0	141,0	122,0	1,73	70,52	1,42
12,80	118,0	144,0	118,0	1,2	98,33	1,02
13,00	110,0	128,0	110,0	1,4	78,57	1,27
13,20	120,0	141,0	120,0	1,73	69,36	1,44
13,40	124,0	150,0	124,0	2,0	62,0	1,61
13,60	118,0	148,0	118,0	1,73	68,21	1,47
13,80	134,0	160,0	134,0	1,33	100,75	0,99
14,00	122,0	142,0	122,0	1,13	107,96	0,93
14,20	120,0	137,0	120,0	1,8	66,67	1,5
14,40	111,0	138,0	111,0	1,73	64,16	1,56
14,60	124,0	150,0	124,0	3,27	37,92	2,64
14,80	179,0	228,0	179,0	8,8	20,34	4,92
15,00	228,0	360,0	228,0	0,0	,	0,0
15,20	350,0	0,0	350,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Stima non eseguibile
0,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
0,80	
1,00	
1,20	
1,40	Terreni incoerenti a grana grossa e fine
1,60	
1,80	
2,00	Argille sensitive
2,20	Argille sensitive
2,40	
2,60	
2,80	Terreni coesivi ed incorenti a grana fine

3,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
3,20	Terreni incoerenti a grana grossa e fine
3,40	Terreni incoerenti a grana grossa e fine
3,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
3,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
4,00	Sabbie metastabili
4,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
4,40	Terreni incoerenti a grana grossa e fine
4,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
4,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
5,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
5,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
5,40	Sabbie metastabili
5,60	Sabbie metastabili Sabbie metastabili
	Sabbie metastabili Sabbie metastabili
5,80	
6,00	Sabbie metastabili
6,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
12,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
12,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
12,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
12,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
12,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,80	Terreni coesivi ed incorenti a grana fine
15,00	Sabbie metastabili
15,20	Sabbie metastabili
10,20	Zurrin metastaem

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	- a	qc (Kg/cm²)	fs	Lunne & Eide	Sunda Relazione Sperimen tale	Kleven	Lunne,	Lunne, Robertso n and Powell 1977	Terzaghi	Begeman n	De Beer	Baligh ed altri (1980) Nk=(20)
Strato 1	1,80	43,44	1,67	2,48	2,34	2,89	2,55	2,28	2,17	3,09	2,17	2,16
Strato 2	2,60	32,25	2,95	1,83	1,89	2,12	1,87	1,68	1,61	2,28	1,61	1,59
Strato 3	5,20	37,77	0,75	2,12	2,10	2,47	2,18	1,95	1,89	2,65	1,89	1,85
Strato 4	14,60	96,66	1,23	5,42	3,57	6,31	5,57	4,98	4,83	6,76	4,83	4,73
Strato 5	15,20	252,33	2,93	14,27	5,00	16,61	14,66	13,11	12,62	17,80	12,62	12,46

TERRENI INCOERENTI

Densità relativa (%)

- 1	Denistra retariva (70)											
		Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski			
	(m)		(Kg/cm ²)	(Kg/cm²) Schmertmann				1983	1985			
					1976							
Ī	Strato 1	1,80	43,44	1,67	69,21	91,37	89,08	70,07	97,87			
	Strato 2	2,60	32,25	2,95	47,45	55,3	56,34	48,12	62,52			
	Strato 3	5,20	37,77	0,75	42,65	43,51	46,06	43,28	48,32			
Ī	Strato 4	14,60	96,66	1,23	54,73	50,21	53,58	55,46	45,74			
Ī	Strato 5	15,20	252,33	2,93	75,99	73,94	76,37	76,9	60,75			

Angolo di resistenza al taglio (°)

Tingoto at I	ringolo di resistenza di digito ()													
	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof			
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951			
	(m)			Mitchell					Campanell					
				1973					a 1983					
Strato 1	1,80	43,44	1,67	41,06	37,94	35,35	32,9	40,79	45	37,2	36,5			
Strato 2	2,60	32,25	2,95	35,42	31,82	28,93	27,03	35,74	39,82	26,82	31,48			
Strato 3	5,20	37,77	0,75	33,24	29,36	26,35	24,67	34,09	37,02	24,7	33,96			
Strato 4	14,60	96,66	1,23	33,11	28,91	25,88	24,24	35,03	36,49	24,45	45			
Strato 5	15,20	252,33	2,93	35,81	31,57	28,67	26,8	38,35	39,55	26,71	45			

Modulo di Young (Kg/cm²)

miodalo di roding (116,0111					
	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	1,80	43,44	1,67	108,60	86,88	218,75
Strato 2	2,60	32,25	2,95	80,63	64,50	301,99
Strato 3	5,20	37,77	0,75	94,43	75,54	407,12
Strato 4	14,60	96,66	1,23	241,65	193,32	964,16
Strato 5	15,20	252,33	2,93	630,83	504,66	1798,41

Modulo Edome	Modulo Edometrico (Kg/cm²)										
	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -			
	(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat			
				da	1983 -						
				Schmertmann	Robertson and						
					Powell 1997						
Strato 1	1,80	43,44	1,67	75,23	170,40	348,90	86,88	130,32			
Strato 2	2,60	32,25	2,95	49,11	126,51	254,67	64,50	96,75			
Strato 3	5,20	37,77	0,75	44,07	148,16	297,31	75,54	113,31			
Strato 4	14,60	96,66	1,23	66,54	379,16	772,29	164,32	144,99			
Strato 5	15,20	252,33	2,93	102,59	514,90	2047,22	378,49	378,49			

Peso unità di volume

cso unita ai voianic					
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m³)
Strato 1	1,80	43,44	1,67	Meyerhof	1,80
Strato 2	2,60	32,25	2,95	Meyerhof	1,80
Strato 3	5,20	37,77	0,75	Meyerhof	1,80
Strato 4	14,60	96,66	1,23	Meyerhof	1,90
Strato 5	15,20	252,33	2,93	Meyerhof	1,90

Peso	unità	di	volume	saturo
------	-------	----	--------	--------

	(m)	(Kg/cm²)	(Kg/cm²)		saturo (t/m³)
Strato 1	1,80	43,44	1,67	Meyerhof	2,10
Strato 2	2,60	32,25	2,95	Meyerhof	2,10
Strato 3	5,20	37,77	0,75	Meyerhof	2,10
Strato 4	14,60	96,66	1,23	Meyerhof	2,20
Strato 5	15,20	252,33	2,93	Meyerhof	2,20

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 02/05/2007
Profondità prova 9,40 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	0,0	8	(======================================
0,40	0,0	0,0	0,0	1,73	0,0	
0,60	49,0	75,0	49,0	1,07	45,79	2,18
0,80	114,0	130,0	114,0	2,0	57,0	1,75
1,00	56,0	86,0	56,0	2,07	27,05	3,7
1,20	93,0	124,0	93,0	2,13	43,66	2,29
1,40	14,0	46,0	14,0	1,0	14,0	7,14
1,60	12,0	27,0	12,0	0,47	25,53	3,92
1,80	17,0	24,0	17,0	0,67	25,37	3,94
2,00	20,0	30,0	20,0	1,67	11,98	8,35
2,20	19,0	44,0	19,0	0,87	21,84	4,58
2,40	16,0	29,0	16,0	0,4	40,0	2,5
2,60	19,0	25,0	19,0	1,4	13,57	7,37
2,80	17,0	38,0	17,0	0,67	25,37	3,94
3,00	23,0	33,0	23,0	0,8	28,75	3,48
3,20	25,0	37,0	25,0	0,53	47,17	2,12
3,40	25,0	33,0	25,0	0,6	41,67	2,4
3,60	24,0	33,0	24,0	0,53	45,28	2,21
3,80	18,0	26,0	18,0	0,6	30,0	3,33
4,00	17,0	26,0	17,0	0,73	23,29	4,29
4,20	12,0	23,0	12,0	0,47	25,53	3,92
4,40	16,0	23,0	16,0	0,4	40,0	2,5

4,60	19,0	25,0	19,0	0,4	47,5	2,11
4,80	16,0	22,0	16,0	0,87	18,39	5,44
5,00	20,0	33,0	20,0	0,4	50,0	2,0 2,67
5,20	30,0	36,0	30,0	0,8	37,5	2,67
5,40	36,0	48,0	36,0	0,93	38,71	2,58
5,60	34,0	48,0	34,0	1,4	24,29	4,12
5,80	50,0	71,0	50,0	0,87	57,47	1,74
6,00	55,0	68,0	55,0	0,93	59,14	1,69
6,20	29,0	43,0	29,0	0,93	31,18	3,21
6,40	24,0	38,0	24,0	1,07	22,43	4,46
6,60	25,0	41,0	25,0	0,47	53,19	1,88
6,80	34,0	41,0	34,0	0,6	56,67	1,76
7,00	23,0	32,0	23,0	1,0	23,0	4,35
7,20	30,0	45,0	30,0	1,07	28,04	3,57
7,40	56,0	72,0	56,0	1,13	49,56	2,02
7,60	68,0	85,0	68,0		39,31	2,54
7,80	65,0	91,0	65,0	1,87	34,76	2,88
8,00	59,0	87,0	59,0	0,67	88,06	1,14
8,20	79,0	89,0	79,0	1,47	53,74	1,86
8,40	76,0	98,0	76,0	0,87	87,36	1,14
8,60	78,0	91,0	78,0	1,0	78,0	1,28
8,80	75,0	90,0	75,0	0,87	86,21	1,16
9,00	78,0	91,0	78,0	0,53	147,17	0,68
9,20	82,0	90,0	82,0		47,4	2,11
9,40	80,0	106,0	80,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Stima non eseguibile
0,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
0,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,00	Terreni coesivi ed incorenti a grana fine
1,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,40	Argille sensitive
1,60	Materiali sensitivi coesivi ed incoerenti
1,80	Terreni coesivi ed incorenti a grana fine
2,00	Argille sensitive
2,20	Argille sensitive
2,40	Materiali sensitivi poco coesivi a grana medio grossa
2,60	Argille sensitive
2,80	Terreni coesivi ed incorenti a grana fine
3,00	Terreni coesivi ed incorenti a grana fine
3,20	Terreni incoerenti a grana grossa e fine
3,40	Terreni incoerenti a grana grossa e fine
3,60	Terreni incoerenti a grana grossa e fine
3,80	Terreni coesivi ed incorenti a grana fine
4,00	Argille sensitive
4,20	Materiali sensitivi coesivi ed incoerenti
4,40	Materiali sensitivi poco coesivi a grana medio grossa
4,60	Materiali sensitivi poco coesivi a grana medio grossa
4,80	Argille sensitive
5,00	Materiali sensitivi poco coesivi a grana medio grossa
5,20	Terreni incoerenti a grana grossa e fine
5,40	Terreni incoerenti a grana grossa e fine
5,60	Terreni coesivi ed incorenti a grana fine
5,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,20	Terreni coesivi ed incorenti a grana fine
6,40	Terreni coesivi ed incorenti a grana fine
6,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,00	Terreni coesivi ed incorenti a grana fine
7,20	Terreni coesivi ed incorenti a grana fine
7,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,80	Terreni incoerenti a grana grossa e fine
8,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)

8,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
8,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
9,40	Sabbie metastabili

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsione	non urcha	ta (115/C111	,									
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk = (20)
							n and	1977				
							Powell					
							1977					
Strato 1	1,20	52,0	1,5	2,97	2,62	3,46	3,05	2,73	2,60	3,71	2,60	2,60
Strato 2	5,00	18,37	0,71	1,02	1,21	1,19	1,05	0,94	0,92	1,27	0,92	0,89
Strato 3	6,00	41,0	0,99	2,29	2,20	2,67	2,35	2,10	2,05	2,86	2,05	2,00
Strato 4	7,20	27,5	0,86	1,50	1,63	1,75	1,54	1,38	1,38	1,88	1,38	1,31
Strato 5	9,40	72,36	1,08	4,05	3,10	4,72	4,16	3,72	3,62	5,05	3,62	3,54

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	1,20	52,0	1,5	81,91	100	100	82,87	100
Strato 2	5,00	18,37	0,71	26,34	25,03	28,35	26,83	36,07
Strato 3	6,00	41,0	0,99	40,27	37,58	40,89	40,88	41,15
Strato 4	7,20	27,5	0,86	26,08	17,6	22,37	26,57	23,99
Strato 5	9,40	72,36	1,08	49,96	46,16	49,49	50,65	44,42

Angolo di resistenza al taglio (°)

Angolo ul i	Angolo di Tesistenza ai tagno ()											
	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof	
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951	
	(m)			Mitchell					Campanell			
				1973					a 1983			
Strato 1	1,20	52,0	1,5	44,32	41,48	39,07	36,3	42	45	42,63	40,35	
Strato 2	5,00	18,37	0,71	31,1	27,24	24,12	22,64	31,5	34,44	23,4	25,25	
Strato 3	6,00	41,0	0,99	32,14	28,12	25,04	23,48	33,26	35,53	23,93	35,41	
Strato 4	7,20	27,5	0,86	29,32	25,15	21,92	20,63	30,46	31,71	22,64	29,35	
Strato 5	9,40	72,36	1,08	32,82	28,69	25,64	24,02	34,46	36,22	24,29	45	

Modulo di Young (Kg/cm²)

Modulo di Toulig (woddio di Todiig (Ng/Ciii-)										
	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988					
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)					
Strato 1	1,20	52,0	1,5	130,00	104,00	208,00					
Strato 2	5,00	18,37	0,71	45,93	36,74	238,74					
Strato 3	6,00	41,0	0,99	102,50	82,00	471,11					
Strato 4	7,20	27,5	0,86	68,75	55,00	381,92					
Strato 5	9,40	72,36	1,08	180,90	144,72	756,94					

Modulo Edometrico (Kg/cm²)

Modulo Edolli	ctrico (ixg/cm /							
	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	1,20	52,0	1,5	81,58	203,98	420,03	88,40	78,00
Strato 2	5,00	18,37	0,71	26,71	72,06	138,80	36,74	91,85
Strato 3	6,00	41,0	0,99	42,85	160,83	321,58	82,00	123,00
Strato 4	7,20	27,5	0,86	29,30	107,87	208,35	55,00	137,50
Strato 5	9,40	72,36	1,08	57,43	283,84	575,47	123,01	108,54

Peso unità di volume

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
Strato 1	1,20	52,0	1,5	Meyerhof	1,80
Strato 2	5,00	18,37	0,71	Meyerhof	1,80
Strato 3	6,00	41,0	0,99	Meyerhof	1,80
Strato 4	7,20	27,5	0,86	Meyerhof	1,80
Strato 5	9,40	72,36	1,08	Meyerhof	1,90

Peso unità di volume saturo

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	1,20	52,0	1,5	Meyerhof	2,10
Strato 2	5,00	18,37	0,71	Meyerhof	2,10
Strato 3	6,00	41,0	0,99	Meyerhof	2,10
Strato 4	7,20	27,5	0,86	Meyerhof	2,10
Strato 5	9,40	72,36	1,08	Meyerhof	2,20

PROVA ... CPT Nr.9

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 07/05/2007
Profondità prova 20,00 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	0,0		
0,40	0,0	0,0	0,0	0,0		
0,60	,	0,0	0,0	2,2	0,0	
0,80	19,0	52,0	19,0	0,8	23,75	4,21
1,00	44,0	56,0	44,0	0,87	50,57	1,98
1,20	10,0	23,0	10,0	1,47	6,8	14,7
1,40	15,0	37,0	15,0	0,67	22,39	4,47
1,60	,	15,0	5,0	0,87	5,75	17,4
1,80	13,0	26,0	13,0	0,13	100,0	1,0
2,00	11,0	13,0	11,0	0,4	27,5	3,64
2,20	3,0	9,0	3,0	0,27	11,11	9,0
2,40	9,0	13,0	9,0	0,2	45,0	2,22
2,60	4,0	7,0	4,0	0,13	30,77	3,25
2,80		8,0	6,0	0,13	46,15	2,17
3,00	,	15,0	13,0	0,4	32,5	3,08
3,20	7,0	13,0	7,0	0,2	35,0	2,86
3,40	11,0	14,0	11,0	0,47	23,4	4,27

3,60		22,0	15,0	0,6	25,0	4,0
3,80		35,0	26,0	0,07	371,43	0,27
4,00		24,0	23,0	0,4	57,5	1,74
4,20		20,0	14,0	1,47	9,52	10,5
4,40		37,0 42,0	15,0 36,0	0,4	37,5 60,0	2,67 1,67
4,80		25,0	16,0	0,8	59,26	1,69
5,00		27,0	23,0	1,27	18,11	5,52
5,20		61,0	42,0	0,53	79,25	1,26
5,40		33,0	25,0	1,27	19,69	5,08
5,60		44,0	25,0	0,33	75,76	1,32
5,80		20,0	15,0	0,6	25,0	4,0
6,00		21,0	12,0	0,33	36,36	2,75
6,20		10,0	5,0	0,2	25,0	4,0
6,40		10,0	7,0	0,8	8,75	11,43
6,60	20,0	32,0	20,0	0,2	100,0	1,0
6,80		38,0	35,0	0,87	40,23	2,49
7,00		31,0	18,0	0,13	138,46	0,72
7,20 7,40		29,0 21,0	27,0 11,0	0,67 0,47	40,3 23,4	2,48 4,27
7,40		32,0	25,0	0,47	53,19	1,88
7,80		24,0	17,0	0,47	19,54	5,12
8,00		28,0	15,0	0,6	25,0	4,0
8,20		17,0	8,0	0,4	20,0	5,0
8,40		14,0	8,0	0,33	24,24	4,13
8,60		17,0	12,0	0,2	60,0	1,67
8,80	14,0	17,0	14,0	0,47	29,79	3,36
9,00		20,0	13,0	0,73	17,81	5,62
9,20		27,0	16,0	1,0	16,0	6,25
9,40		48,0	33,0	0,73	45,21	2,21
9,60		22,0	11,0	0,2	55,0	1,82
9,80		33,0	30,0	0,2	150,0	0,67
10,00		61,0	58,0	0,33	175,76	0,57
10,20 10,40		32,0 46,0	27,0 43,0	0,2 1,33	135,0 32,33	0,74 3,09
10,40		35,0	15,0	0,13	115,38	0,87
10,80		37,0	35,0	0,93	37,63	2,66
11,00		26,0	12,0	0,13	92,31	1,08
11,20		7,0	5,0	0,4	12,5	8,0
11,40		9,0	3,0	0,2	15,0	6,67
11,60	4,0	7,0	4,0	0,33	12,12	8,25
11,80	3,0				3,75	26,67
12,00	32,0		32,0	0,07	457,14	0,22
12,20			58,0	1,4	41,43	2,41
12,40			70,0	1,47	47,62	2,1
12,60		77,0	55,0	1,93	28,5	3,51
12,80		85,0	56,0	2,07	27,05	3,7
13,00 13,20		41,0 73,0	10,0 49,0	1,6	6,25 73,13	16,0 1,37
13,40			49,0 96,0	0,67 2,73	35,16	2,84
13,40		82,0	41,0	1,53	26,8	3,73
13,80		60,0	37,0	0,2	185,0	0,54
14,00		39,0	36,0	0,6	60,0	1,67
14,20		54,0	45,0	0,27	166,67	0,6
14,40	8,0	12,0	8,0	0,73	10,96	9,13
14,60		23,0	12,0	0,8	15,0	6,67
14,80		42,0	30,0	0,6	50,0	2,0
15,00		31,0	22,0	0,47	46,81	2,14
15,20	7,0	14,0	7,0	0,2	35,0	2,86
15,40	5,0	8,0	5,0	0,2	25,0	4,0
15,60		9,0	6,0	0,2	30,0	3,33
15,80 16,00		8,0 12,0	5,0 9,0	0,2 0,27	25,0 33,33	4,0 3,0
16,00		12,0	9,0 8,0	0,27	29,63	3,38
16,40		11,0	7,0	0,27	29,63	4,71
16,60				0,33		5,5
16,80			5,0	0,27	18,52	5,4
10,00	5,0	10,0	3,0	0,27	10,32	J,¬

17,00	4,0	8,0	4,0	0,33		8,25
17,20	4,0	9,0	4,0	0,4	10,0	10,0
17,40	42,0	48,0	42,0	1,07	39,25	2,55
17,60	6,0	22,0	6,0	0,13	46,15	2,17
17,80	9,0	11,0	9,0	0,53	16,98	5,89
18,00	27,0	35,0	27,0	0,53	50,94	1,96
18,20	8,0	16,0	8,0	0,47	17,02	5,88
18,40	16,0	23,0	16,0	2,27	7,05	14,19
18,60	10,0	44,0	10,0	0,4	25,0	4,0
18,80	6,0	12,0	6,0	0,33	18,18	5,5
19,00	7,0	12,0	7,0	0,33	21,21	4,71
19,20	7,0	12,0	7,0	0,4		5,71
19,40	6,0	12,0	6,0	0,27	22,22	4,5
19,60	6,0	10,0	6,0	0,33	18,18	5,5
19,80	8,0	13,0	8,0	0,47	17,02	5,88
20,00	7,0	14,0	7,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Stima non eseguibile
0,60	Stima non eseguibile
0,80	Terreni coesivi ed incorenti a grana fine
1,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,20	Argille sensitive
1,40	Argille sensitive
1,60	Torba e Argille organiche
1,80	Materiali sensitivi poco coesivi a grana medio grossa
2,00	Materiali sensitivi coesivi ed incoerenti
2,20	Torba e Argille organiche
2,40	Materiali sensitivi coesivi ed incoerenti
2,60	Argille sensitive
2,80	Materiali sensitivi coesivi ed incoerenti
3,00	Materiali sensitivi coesivi ed incoerenti
3,20	Materiali sensitivi coesivi ed incoerenti
3,40	Argille sensitive
3,60	Terreni coesivi ed incorenti a grana fine
3,80	Sabbie metastabili
4,00	Sabbie metastabili
4,20	Argille sensitive
4,40	Materiali sensitivi coesivi ed incoerenti
4,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
4,80	Materiali sensitivi poco coesivi a grana medio grossa
5,00	Argille sensitive
5,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
5,40	Argille sensitive
5,60	Sabbie metastabili
5,80	Terreni coesivi ed incorenti a grana fine
6,00	Materiali sensitivi coesivi ed incoerenti
6,20	Argille sensitive
6,40	Torba e Argille organiche
6,60	Sabbie metastabili
6,80	Terreni incoerenti a grana grossa e fine
7,00	Sabbie metastabili
7,20	Terreni incoerenti a grana grossa e fine
7,40	Argille sensitive
7,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
7,80	Argille sensitive
8,00	Terreni coesivi ed incorenti a grana fine
8,20	Argille sensitive
8,40	Argille sensitive
8,60	Materiali sensitivi poco coesivi a grana medio grossa
8,80	Materiali sensitivi coesivi ed incoerenti
9,00	Argille sensitive
9,20	Argille sensitive
9,40	Terreni incoerenti a grana grossa e fine
9,60	Materiali sensitivi poco coesivi a grana medio grossa
9,80	Sabbie metastabili

10.00	0.11
10,00 10,20	Sabbie metastabili Sabbie metastabili
	Terreni incoerenti a grana grossa e fine
10,40	1 erreni incoerenti a grana grossa e fine Sabbie metastabili
10,60	
10,80	Terreni incoerenti a grana grossa e fine
11,00	Materiali sensitivi poco coesivi a grana medio grossa
11,20	Torba e Argille organiche
11,40	Torba e Argille organiche
11,60	Torba e Argille organiche
11,80 12,00	Torba e Argille organiche Sabbie metastabili
12,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
12,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
12,60	Terreni incoerenti a grana grossa e fine
12,80	Terreni coesivi ed incorenti a grana fine
13,00	Argille sensitive
13,20 13,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,60	Terreni coesivi ed incorenti a grana fine
13,80 14,00	Sabbie metastabili Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
14,00	Sabbie metastabili
14,40 14,60	Argille sensitive
14,80	Argille sensitive
14,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Materiali sensitivi poco coesivi a grana medio grossa
15,00	Materiali sensitivi coesivi a grana medio grossa
15,40	Argille sensitive
15,40	Argine sensitive Argille sensitive
15,80	Argille sensitive
15,80	Materiali sensitivi coesivi ed incoerent
16,00	Materiali sensitivi coesivi ed incoerent
16,40	Argille sensitive
16,40	Argille sensitive
16,80	Argille sensitive
17,00	Torba e Argille organiche
17,00	Torba e Argille organiche Torba e Argille organiche
17,20	Terreni incoerenti a grana grossa e fine
17,40	Materiali sensitivi coesivi ed incoerent
17,80	Argille sensitive
18,00	
18,00	Terreni incoerenti a grana grossa e fine
18,40	Argille sensitive Argille sensitive
18,60	Argine sensitive Argille sensitive
18,80	Argine sensitive Argille sensitive
19,00	Argine sensitive Argille sensitive
19,00	
	Argille sensitive
19,40 19,60	Argille sensitive
19,80	Argille sensitive
20,00	Argille sensitive Materiali sensitivi poco coesivi a grana medio grossa
20,00	iviaterian sensitivi poco coesivi a grana medio grossa

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk = (20)
							n and	1977				
							Powell					
							1977					
Strato 1	1,00	12,6	0,77	0,72	0,90	0,84	0,74	0,66	0,63	0,90	0,63	0,63
Strato 2	3,60	9,38	0,46	0,52	0,68	0,60	0,53	0,48	0,47	0,65	0,47	0,45

Strato 3	5,60	24,5	0,66	1,37	1,51	1,58	1,40	1,25	1,23	1,71	1,23	1,20
Strato 4	6,60	11,8	0,43	0,63	0,78	0,72	0,63	0,57	0,59	0,79	0,59	0,55
Strato 5	7,60	23,2	0,52	1,28	1,42	1,46	1,29	1,16	1,16	1,60	1,16	1,12
Strato 6	9,20	12,88	0,58	0,68	0,82	0,76	0,67	0,60	0,64	0,85	0,64	0,60
Strato 7	10,80	31,5	0,51	1,74	1,78	1,98	1,75	1,56	1,58	2,17	1,58	1,52
Strato 8	12,00	9,83	0,32	0,49	0,58	0,52	0,46	0,41	0,49	0,61	0,49	0,43
Strato 9	13,60	54,38	1,68	3,04	2,58	3,47	3,06	2,74	2,72	3,79	2,72	2,65
Strato 10	20,00	13,16	0,44	0,66	0,72	0,67	0,59	0,53	0,66	0,82	0,66	0,57

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	1,00	12,6	0,77	52,58	81,19	77,95	53,3	99,81
Strato 2	3,60	9,38	0,46	14,93	14,99	18,27	15,32	32,32
Strato 3	5,60	24,5	0,66	33,34	33,32	36,24	33,89	35,09
Strato 4	6,60	11,8	0,43	< 5	< 5	5,99	9,88	5
Strato 5	7,60	23,2	0,52	27,08	22,41	26,4	27,58	19,32
Strato 6	9,20	12,88	0,58	< 5	< 5	5	8,78	5
Strato 7	10,80	31,5	0,51	31,73	25,96	30,07	32,27	17,36
Strato 8	12,00	9,83	0,32	< 5	< 5	5	5	5
Strato 9	13,60	54,38	1,68	44,27	40,29	43,78	44,91	25,52
Strato 10	20,00	13,16	0,44	< 5	< 5	5	5	5

Angolo di resistenza al taglio (°)

ringolo di I	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meverhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-	Cuquot	порредин	De Beer	ann	&	Tierininer	1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	1,00	12,6	0,77	40,99	38,27	35,71	33,22	39,37	45	37,29	22,66
Strato 2	3,60	9,38	0,46	30,31	26,59	23,44	22,02	30,1	33,61	23,01	21,21
Strato 3	5,60	24,5	0,66	32,1	28,26	25,19	23,61	32,66	35,7	23,92	28
Strato 4	6,60	11,8	0,43	27,63	23,57	20,27	19,12	28,7	29,55	22,12	22,3
Strato 5	7,60	23,2	0,52	30,35	26,34	23,18	21,77	31,14	33,29	23,01	27,42
Strato 6	9,20	12,88	0,58	26,92	22,75	19,41	18,33	28,7	28,16	21,96	22,78
Strato 7	10,80	31,5	0,51	30,54	26,45	23,29	21,88	31,63	33,43	23,07	31,14
Strato 8	12,00	9,83	0,32	24,47	20,14	16,66	15,82	28,7	23,14	21,57	21,41
Strato 9	13,60	54,38	1,68	32,22	28,12	25,04	23,48	33,64	35,52	23,9	41,42
Strato 10	20,00	13,16	0,44	24,38	19,94	16,46	15,63	28,7	22,74	21,57	22,91

Modulo di Young (Kg/cm²)

Modulo di Young (Kg/cm²)					
	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	1,00	12,6	0,77	31,50	25,20	78,84
Strato 2	3,60	9,38	0,46	23,45	18,76	133,21
Strato 3	5,60	24,5	0,66	61,25	49,00	294,04
Strato 4	6,60	11,8	0,43	29,50	23,60	181,72
Strato 5	7,60	23,2	0,52	58,00	46,40	308,81
Strato 6	9,20	12,88	0,58	32,20	25,76	198,35
Strato 7	10,80	31,5	0,51	78,75	63,00	405,87
Strato 8	12,00	9,83	0,32	24,57	19,66	151,38
Strato 9	13,60	54,38	1,68	135,95	108,76	607,16
Strato 10	20,00	13,16	0,44	32,90	26,32	202,66

Modulo Edometrico (Kg/cm²)

	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	1,00	12,6	0,77	64,99	49,43	95,37	25,20	63,00
Strato 2	3,60	9,38	0,46	15,84	36,79	66,51	18,76	75,04
Strato 3	5,60	24,5	0,66	34,00	96,11	185,44	49,00	122,50
Strato 4	6,60	11,8	0,43	12,90	46,29	77,00	23,60	59,00
Strato 5	7,60	23,2	0,52	28,07	91,01	168,86	46,40	116,00
Strato 6	9,20	12,88	0,58	15,40	50,52	81,04	25,76	64,40
Strato 7	10,80	31,5	0,51	34,30	123,56	231,53	63,00	94,50

Strato 8	12,00	9,83	0,32	18,55	38,56	50,16	19,66	78,64
Strato 9	13,60	54,38	1,68	49,31	213,31	415,16	92,45	81,57
Strato 10	20,00	13,16	0,44	24,26	51,62	68,20	26,32	65,80

Peso unità di volume

r eso unita ai voiane					
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm²)	(Kg/cm²)		(t/m^3)
Strato 1	1,00	12,6	0,77	Meyerhof	1,80
Strato 2	3,60	9,38	0,46	Meyerhof	1,80
Strato 3	5,60	24,5	0,66	Meyerhof	1,80
Strato 4	6,60	11,8	0,43	Meyerhof	1,80
Strato 5	7,60	23,2	0,52	Meyerhof	1,80
Strato 6	9,20	12,88	0,58	Meyerhof	1,80
Strato 7	10,80	31,5	0,51	Meyerhof	1,90
Strato 8	12,00	9,83	0,32	Meyerhof	1,80
Strato 9	13,60	54,38	1,68	Meyerhof	1,80
Strato 10	20,00	13,16	0,44	Meyerhof	1,80

Peso unità di volume saturo

r eso unita ui voiune s	saturo				
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm²)		saturo
					(t/m^3)
Strato 1	1,00	12,6	0,77	Meyerhof	2,10
Strato 2	3,60	9,38	0,46	Meyerhof	2,10
Strato 3	5,60	24,5	0,66	Meyerhof	2,10
Strato 4	6,60	11,8	0,43	Meyerhof	2,10
Strato 5	7,60	23,2	0,52	Meyerhof	2,10
Strato 6	9,20	12,88	0,58	Meyerhof	2,10
Strato 7	10,80	31,5	0,51	Meyerhof	2,20
Strato 8	12,00	9,83	0,32	Meyerhof	2,10
Strato 9	13,60	54,38	1,68	Meyerhof	2,10
Strato 10	20,00	13,16	0,44	Meyerhof	2,10

PROVA ... CPT Nr.10

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 07/05/2007
Profondità prova 20,00 mt

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	0,0		
0,40	0,0	0,0	0,0	0,8	0,0	
0,60	18,0	30,0	18,0	0,4	45,0	2,22
0,80	21,0	27,0	21,0	0,53	39,62	2,52
1,00	17,0	25,0	17,0	0,73	23,29	4,29
1,20	30,0	41,0	30,0	0,73	41,1	2,43
1,40	35,0	46,0	35,0	0,73	47,95	2,09
1,60	31,0	42,0	31,0	0,4	77,5	1,29
1,80			36,0	0,67	53,73	1,86
2,00	52,0	62,0	52,0	0,4	130,0	0,77
2,20	85,0	91,0	85,0	1,87	45,45	2,2
2,40	49,0	77,0	49,0	1,13	43,36	2,31

2,60	151,0	168,0	151,0	2,53	59,68	1,68
2,80	79,0	117,0	79,0	3,87	20,41	4,9
3,00	74,0	132,0	74,0	2,27	32,6	3,07
3,20	81,0	115,0	81,0	2,4	33,75	2,96
3,40	40,0	76,0	40,0	1,87	21,39	4,68
3,60	22,0	50,0	22,0	0,73	30,14	3,32
3,80	25,0	36,0	25,0	1,07	23,36	4,28
4,00	24,0	40,0	24,0	1,07	22,43	4,46
4,20	27,0	43,0	27,0	1,13	23,89	4,19
4,40	27,0	44,0	27,0	1,4	19,29	5,19
4,60	22,0	43,0	22,0	0,93	23,66	4,23
4,80	22,0	36,0	22,0	1,0	22,0	4,55
5,00	24,0	39,0	24,0	0,93	25,81	3,88
5,20	28,0	42,0	28,0	1,13	24,78	4,04
5,40	32,0	49,0	32,0 41,0	1,2	26,67 30,83	3,75
5,60 5,80	41,0 35,0	59,0 55,0	35,0	1,33 1,8	19,44	3,24 5,14
6,00	27,0	54,0	27,0	1,8	21,26	4,7
6,20	19,0	38,0	19,0	1,13	16,81	5,95
6,40	22,0	39,0	22,0	1,13	13,75	7,27
6,60	55,0	79,0	55,0	1,0	55,0	1,82
6,80	30,0	45,0	30,0	0,8	37,5	2,67
7,00	48,0	60,0	48,0	0,33	145,45	0,69
7,20	69,0	74,0	69,0	2,93	23,55	4,25
7,40	37,0	81,0	37,0	1,53	24,18	4,14
7,60	13,0	36,0	13,0	0,73	17,81	5,62
7,80	13,0	24,0	13,0	0,53	24,53	4,08
8,00	15,0	23,0	15,0	0,53	28,3	3,53
8,20	23,0	31,0	23,0	0,67	34,33	2,91
8,40	34,0	44,0	34,0	1,0	34,0	2,94
8,60	41,0	56,0	41,0	0,27	151,85	0,66
8,80	43,0	47,0	43,0	2,87	14,98	6,67
9,00	25,0	68,0	25,0	1,13	22,12	4,52
9,20	15,0	32,0	15,0	0,2	75,0	1,33
9,40	52,0	55,0	52,0	0,93	55,91	1,79
9,60	39,0	53,0	39,0	1,6	24,38	4,1
9,80	13,0	37,0	13,0	1,13	11,5	8,69
10,00	57,0	74,0	57,0	1,13	50,44	1,98
10,20	84,0	101,0	84,0	0,2	420,0	0,24
10,40	63,0	66,0	63,0	0,53	118,87	0,84
10,60	50,0	58,0	50,0	1,13	44,25	2,26
10,80	43,0	60,0	43,0	0,87	49,43	2,02
11,00	24,0	37,0	24,0	2,0	12,0	8,33
11,20	10,0	40,0	10,0	1,2	8,33	12,0
11,40	26,0	44,0	26,0	2,87	9,06	11,04
11,60	17,0	60,0	17,0	0,73	23,29	4,29
11,80	16,0	27,0	16,0	0,33	48,48	2,06
12,00	9,0 35,0	14,0 40,0	9,0 35,0	0,33	27,27 29,17	3,67
12,20 12,40	23,0	40,0	23,0	1,2 1,0	29,17	3,43 4,35
12,40	71,0	86,0	71,0	5,13	13,84	7,23
12,80	64,0	141,0	64,0	6,53	9,8	10,2
13,00	150,0	248,0	150,0	4,67	32,12	3,11
13,20	150,0	222,0	150,0	5,0	30,4	3,29
13,40	165,0	240,0	165,0	5,33	30,96	3,23
13,60	170,0	250,0	170,0	3,4	50,0	2,0
13,80	150,0	201,0	150,0	7,13	21,04	4,75
14,00	32,0	139,0	32,0	1,87	17,11	5,84
14,20	13,0	41,0	13,0	0,87	14,94	6,69
14,40	14,0	27,0	14,0	0,2	70,0	1,43
14,60	9,0	12,0	9,0	0,47	19,15	5,22
14,80	7,0	14,0	7,0	0,53	13,21	7,57
15,00	12,0	20,0	12,0	0,53	22,64	4,42
15,20	14,0	22,0	14,0	0,93	15,05	6,64
			15,0	1,73	8,67	11,53
15,40	15,0	29,0				
	15,0 40,0 40,0	66,0 52,0	40,0	0,8 1,47	50,0 27,21	2,0 3,68

16,00	33,0	55,0	33,0	1,0	33,0	3,03
16,20	21,0	36,0	21,0	0,27	77,78	1,29
16,40	19,0	23,0	19,0	1,07	17,76	5,63
16,60	13,0	29,0	13,0	1,13	11,5	8,69
16,80	14,0	31,0	14,0	0,87	16,09	6,21
17,00	21,0	34,0	21,0	0,8	26,25	3,81
17,20	16,0	28,0	16,0	0,87	18,39	5,44
17,40	11,0	24,0	11,0	0,4	27,5	3,64
17,60	41,0	47,0	41,0	1,53	26,8	3,73
17,80	42,0	65,0	42,0	1,33	31,58	3,17
18,00	40,0	60,0	40,0	1,47	27,21	3,68
18,20	42,0	64,0	42,0	1,2	35,0	2,86
18,40	34,0	52,0	34,0	1,13	30,09	3,32
18,60	33,0	50,0	33,0	1,33	24,81	4,03
18,80	29,0	49,0	29,0	1,4	20,71	4,83
19,00	30,0	51,0	30,0	1,73	17,34	5,77
19,20	31,0	57,0	31,0	1,4	22,14	4,52
19,40	27,0	48,0	27,0	1,87	14,44	6,93
19,60	22,0	50,0	22,0	1,4	15,71	6,36
19,80	27,0	48,0	27,0	1,47	18,37	5,44
20,00	30,0	52,0	30,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Stima non eseguibile
0,60	Materiali sensitivi poco coesivi a grana medio grossa
0,80	Terreni incoerenti a grana grossa e fine
1,00	Argille sensitive
1,20	Terreni incoerenti a grana grossa e fine
1,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
1,60	Sabbie metastabili
1,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
2,00	Sabbie metastabili
2,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
2,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
2,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
2,80	Terreni coesivi ed incorenti a grana fine
3,00	Terreni incoerenti a grana grossa e fine
3,20	Terreni incoerenti a grana grossa e fine
3,40	Terreni coesivi ed incorenti a grana fine
3,60	Terreni coesivi ed incorenti a grana fine
3,80	Terreni coesivi ed incorenti a grana fine
4,00	Terreni coesivi ed incorenti a grana fine
4,20	Terreni coesivi ed incorenti a grana fine
4,40	Argille sensitive
4,60	Terreni coesivi ed incorenti a grana fine
4,80	Argille sensitive
5,00	Terreni coesivi ed incorenti a grana fine
5,20	Terreni coesivi ed incorenti a grana fine
5,40	Terreni coesivi ed incorenti a grana fine
5,60	Terreni incoerenti a grana grossa e fine
5,80	Argille sensitive
6,00	Argille sensitive
6,20	Argille sensitive
6,40	Argille sensitive
6,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,80	Terreni incoerenti a grana grossa e fine
7,00	Sabbie metastabili
7,20	Terreni coesivi ed incorenti a grana fine
7,40	Terreni coesivi ed incorenti a grana fine
7,60	Argille sensitive
7,80	Argille sensitive
8,00	Terreni coesivi ed incorenti a grana fine
8,20	Terreni incoerenti a grana grossa e fine
8,40	Terreni incoerenti a grana grossa e fine
8,60	Sabbie metastabili
8,80	Argille sensitive

9,00	Terreni coesivi ed incorenti a grana fine
9,20	Materiali sensitivi poco coesivi a grana medio grossa
9,40 9,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
	Terreni coesivi ed incorenti a grana fine
9,80	Argille sensitive
10,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,20	Sabbie metastabili
10,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
10,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
11,00	Argille sensitive
11,20	Argille sensitive
11,40	Argille sensitive
11,60	Argille sensitive
11,80	Materiali sensitivi poco coesivi a grana medio grossa
12,00	Materiali sensitivi coesivi ed incoerenti
12,20	Terreni coesivi ed incorenti a grana fine
12,40	Terreni coesivi ed incorenti a grana fine
12,60	Argille sensitive
12,80	Argille sensitive
13,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,20	Terreni incoerenti a grana grossa e fine
13,40	Terreni incoerenti a grana grossa e fine
13,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
13,80	Terreni coesivi ed incorenti a grana fine
14,00	Argille sensitive
14,20	Argille sensitive
14,40	Materiali sensitivi poco coesivi a grana medio grossa
14,60	Argille sensitive
14,80	Torba e Argille organiche
15,00	Argille sensitive
15,20	Argille sensitive
15,40	Argille sensitive
15,60	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
15,80	Terreni coesivi ed incorenti a grana fine
16,00	Terreni incoerenti a grana grossa e fine
16,20	Sabbie metastabili
16,40	Argille sensitive
16,60	Argille sensitive
16,80	Argille sensitive
17,00	Terreni coesivi ed incorenti a grana fine
17,20	Argille sensitive
17,40	Materiali sensitivi coesivi ed incoerenti
17,60	Terreni coesivi ed incorenti a grana fine
17,80	Terreni incoerenti a grana grossa e fine
18,00	Terreni coesivi ed incorenti a grana fine
18,20	Terreni incoerenti a grana grossa e fine
18,40	Terreni coesivi ed incorenti a grana fine
18,60	Terreni coesivi ed incorenti a grana fine
18,80	Argille sensitive
19,00	Argille sensitive
19,20	Terreni coesivi ed incorenti a grana fine
19,40	Argille sensitive
19,60	Argille sensitive
	A maille consitive
19,80 20,00	Argille sensitive Sabbie metastabili

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven	1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk = (20)

							n and Powell 1977	1977				
Strato 1	1,80	20,89	0,55	1,19	1,37	1,38	1,22	1,09	1,04	1,48	1,04	1,04
Strato 2	3,20	81,57	2,07	4,65	3,35	5,41	4,77	4,27	4,08	5,80	4,08	4,06
Strato 3	12,80	33,21	1,31	1,81	1,86	2,11	1,86	1,67	1,66	2,26	1,66	1,58
Strato 4	13,80	157,4	5,11	8,87	4,35	10,32	9,10	8,14	7,87	11,06	7,87	7,74
Strato 5	20,00	24.9	1,07	1.26	1,37	1.44	1,27	1.13	1.24	1,57	1,25	1.10

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm ²)	(Kg/cm ²)	Schmertmann			1983	1985
			-	1976				
Strato 1	1,80	20,89	0,55	49,19	66,08	65,27	49,88	78,49
Strato 2	3,20	81,57	2,07	71,88	85,59	84,94	72,76	85,2
Strato 3	12,80	33,21	1,31	28,24	18,44	23,43	28,75	22,93
Strato 4	13,80	157,4	5,11	65,67	62,53	65,4	66,5	52,39
Strato 5	20,00	24,9	1,07	< 5	< 5	5	11,71	5

Angolo di resistenza al taglio (°)

Angulo ui i	csistenza a	i tagno ()									
	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	1,80	20,89	0,55	37,79	34,58	31,83	29,68	37,25	42,71	30,4	26,38
Strato 2	3,20	81,57	2,07	39,26	35,74	33,05	30,8	39,98	43,85	32,76	45
Strato 3	12,80	33,21	1,31	29,21	24,97	21,73	20,46	30,58	31,47	22,6	31,91
Strato 4	13,80	157,4	5,11	34,53	30,32	27,35	25,59	36,75	38,14	25,51	45
Strato 5	20,00	24,9	1,07	25,07	20,5	17,04	16,17	28,7	23,86	21,68	28,18

Modulo di Young (Kg/cm²)

miounio di Toung (isg/ciii /					
	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm²)		Campanella (1983)	Ey(50)
Strato 1	1,80	20,89	0,55	52,22	41,78	168,59
Strato 2	3,20	81,57	2,07	203,92	163,14	467,33
Strato 3	12,80	33,21	1,31	83,02	66,42	457,87
Strato 4	13,80	157,4	5,11	393,50	314,80	1337,33
Strato 5	20,00	24,9	1,07	62,25	49,80	383,46

Modulo Edometrico (Kg/cm²)

	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	1,80	20,89	0,55	54,48	81,94	162,93	41,78	104,45
Strato 2	3,20	81,57	2,07	75,17	319,97	661,10	138,67	122,35
Strato 3	12,80	33,21	1,31	33,82	130,27	252,86	66,42	99,63
Strato 4	13,80	157,4	5,11	83,56	328,71	1268,05	236,10	236,10
Strato 5	20,00	24,9	1,07	38,39	97,67	167,97	49,80	124,50

Peso unità di volume

cso uma ui voiume					
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm²)	(Kg/cm ²)		(t/m^3)
Strato 1	1,80	20,89	0,55	Meyerhof	1,80
Strato 2	3,20	81,57	2,07	Meyerhof	1,80
Strato 3	12,80	33,21	1,31	Meyerhof	1,80
Strato 4	13,80	157,4	5,11	Meyerhof	1,80
Strato 5	20,00	24,9	1,07	Meyerhof	1,80

Peso unità di volume saturo

	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	1,80	20,89	0,55	Meyerhof	2,10
Strato 2	3,20	81,57	2,07	Meyerhof	2,10
Strato 3	12,80	33,21	1,31	Meyerhof	2,10
Strato 4	13,80	157,4	5,11	Meyerhof	2,10

	20.00				
Ctuata 5	20.00	24.0	1.07	Marianhat	2 10
Strato 5	20.00	/4.9	1.07	Meverhof	Z., 1U

Strumento utilizzato... PAGANI TG 63 (200 kN)
Prova eseguita in data 07/05/2007
Profondità prova 20,00 mt

	Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)		(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
	0,20	0,0	0,0	0,0	0,0		
	0,40	0,0	0,0	0,0	0,8	0,0	
	0,60	17,0	29,0	17,0	0,67	25,37	3,94
	0,80	20,0	30,0	20,0	0,8	25,0	4,0
	1,00	18,0	30,0	18,0	0,8	22,5	4,44
	1,20	18,0	30,0	18,0	0,8	22,5	4,44
	1,40	24,0	36,0	24,0	0,87	27,59	3,63

1,60	22,0	35,0	22,0	1,53	14,38	6,95
1,80	54,0	77,0	54,0	1,53	35,29	2,83
2,00	57,0	80,0	57,0	1,4	40,71	2,46
2,20	50,0	71,0	50,0	0,93	53,76	1,86
2,40	77,0	91,0	77,0	0,93	82,8	1,21
2,60	78,0	92,0	78,0 85,0	0,4	195,0	0,51 0,55
2,80	85,0	91,0 92,0	85,0 85,0	0,47	180,85 91,4	
3,00 3,20	85,0 20,0	34,0	20,0	0,93 0,93	21,51	1,09 4,65
3,40	19,0	33,0	19,0	0,93	21,84	4,58
3,60	21,0	34,0	21,0	1,0	21,0	4,76
3,80	21,0	36,0	21,0	1,07	19,63	5,1
4,00	21,0	37,0	21,0	1,2	17,5	5,71
4,20	22,0	40,0	22,0	1,27	17,32	5,77
4,40	22,0	41,0	22,0	1,47	14,97	6,68
4,60	25,0	47,0	25,0	1,6	15,63	6,4
4,80	26,0	50,0	26,0	1,47	17,69	5,65
5,00	27,0	49,0	27,0	1,67	16,17	6,19
5,20	27,0	52,0	27,0	1,2	22,5	4,44
5,40	50,0	68,0	50,0	1,2	41,67	2,4
5,60 5,80	52,0 54,0	70,0 78,0	52,0 54,0	1,6 1,13	32,5 47,79	3,08 2,09
6,00	23,0	40,0	23,0	0,93	24,73	4,04
6,20	23,0	37,0	23,0	0,93	28,75	3,48
6,40	20,0	32,0	20,0	1,53	13,07	7,65
6,60	13,0	36,0	13,0	1,6	8,13	12,31
6,80	12,0	36,0	12,0	1,6	7,5	13,33
7,00	13,0	37,0	13,0	0,8	16,25	6,15
7,20	10,0	22,0	10,0	1,13	8,85	11,3
7,40	10,0	27,0	10,0	1,07	9,35	10,7
7,60	9,0	25,0	9,0	1,47	6,12	16,33
7,80	13,0	35,0	13,0	1,4	9,29	10,77
8,00	13,0	34,0	13,0	1,2	10,83	9,23
8,20	12,0	30,0	12,0	1,27	9,45	10,58
8,40	13,0	32,0	13,0	1,13	11,5	8,69
8,60 8,80	13,0 13,0	30,0 24,0	13,0 13,0	0,73 0,67	17,81 19,4	5,62 5,15
9,00	15,0	25,0	15,0	0,67	20,55	4,87
9,20	13,0	24,0	13,0	0,67	19,4	5,15
9,40	34,0	44,0	34,0	3,0	11,33	8,82
9,60	25,0	70,0	25,0	3,2	7,81	12,8
9,80	26,0	74,0	26,0	0,87	29,89	3,35
10,00	13,0	26,0	13,0	1,0	13,0	7,69
10,20	10,0	25,0	10,0	1,0	10,0	10,0
10,40	12,0	27,0	12,0	0,73	16,44	6,08
10,60	12,0	23,0	12,0	1,73	6,94	14,42
10,80	40,0	66,0	40,0	0,8	50,0	2,0
11,00	40,0	52,0	40,0	1,47	27,21	3,68
11,20 11,40	33,0 21,0	55,0 35,0	33,0 21,0	0,93 0,27	35,48 77,78	2,82 1,29
11,40	20,0	24,0	21,0	1,4	14,29	7,0
11,80	57,0	78,0	57,0	1,33	42,86	2,33
12,00	60,0	80,0	60,0	0,53	113,21	0,88
12,20	63,0	71,0	63,0	1,2	52,5	1,9
12,40	25,0	43,0	25,0	1,07	23,36	4,28
12,60	24,0	40,0	24,0	1,07	22,43	4,46
12,80	25,0	41,0	25,0	1,33	18,8	5,32
13,00	26,0	46,0	26,0	0,8	32,5	3,08
13,20	20,0	32,0	20,0	1,47	13,61	7,35
13,40	22,0	44,0		1,6	13,75	7,27
13,60	57,0	81,0	57,0	1,8	31,67	3,16
13,80	60,0	87,0	60,0	1,8	33,33	3,0
14,00 14,20	63,0 57,0	90,0 79,0	63,0 57,0	1,47 1,27	42,86 44,88	2,33
14,20	50,0	69,0	57,0	1,27	34,01	2,23 2,94
14,40	70,0	92,0	70,0	3,2	21,88	4,57
14,80	75,0	123,0	75,0	1,67	44,91	2,23
17,00	, 5,0	143,0	73,0	1,07	77,71	4,43

15,00	112,0	137,0	112,0	2,4	46,67	2,14
15,20	32,0	68,0	32,0	1,93	16,58	6,03
15,40	30,0	59,0	30,0	2,0	15,0	6,67
15,60	27,0	57,0	27,0	1,07	25,23	3,96
15,80	13,0	29,0	13,0	1,13	11,5	8,69
16,00	13,0	30,0	13,0	1,4	9,29	10,77
16,20	14,0	35,0	14,0	1,07	13,08	7,64
16,40	11,0	27,0	11,0	0,93	11,83	8,45
16,60	25,0	39,0	25,0	1,13	22,12	4,52
16,80	26,0	43,0	26,0	1,33	19,55	5,12
17,00	27,0	47,0	27,0	0,93	29,03	3,44
17,20	20,0	34,0	20,0	1,0	20,0	5,0
17,40	13,0	28,0	13,0	1,07	12,15	8,23
17,60	13,0	29,0	13,0	1,13	11,5	8,69
17,80	40,0	57,0	40,0	1,0	40,0	2,5
18,00	71,0	86,0	71,0	6,53	10,87	9,2
18,20	150,0	248,0	150,0	4,47	33,56	2,98
18,40	134,0	201,0	134,0	1,8	74,44	1,34
18,60	13,0	40,0	13,0	2,2	5,91	16,92
18,80	14,0	47,0	14,0	1,87	7,49	13,36
19,00	12,0	40,0	12,0	1,13	10,62	9,42
19,20	33,0	50,0	33,0	1,33	24,81	4,03
19,40	29,0	49,0	29,0	1,2	24,17	4,14
19,60	29,0	47,0	29,0	1,2	24,17	4,14
19,80	30,0	48,0	30,0	1,07	28,04	3,57
20,00	34,0	50,0	34,0	0,0		0,0

Profondità (m)	Valutazione litologica secondo: Douglas Olsen 1981
0,20	Stima non eseguibile
0,40	Stima non eseguibile
0,60	Terreni coesivi ed incorenti a grana fine
0,80	Terreni coesivi ed incorenti a grana fine
1,00	Argille sensitive
1,20	Argille sensitive
1,40	Terreni coesivi ed incorenti a grana fine
1,60	Argille sensitive
1,80	Terreni incoerenti a grana grossa e fine
2,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
2,20	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
2,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
2,60	Sabbie metastabili
2,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
3,00	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
3,20	Argille sensitive
3,40	Argille sensitive
3,60	Argille sensitive
3,80	Argille sensitive
4,00	Argille sensitive
4,20	Argille sensitive
4,40	Argille sensitive
4,60	Argille sensitive
4,80	Argille sensitive
5,00	Argille sensitive
5,20	Terreni coesivi ed incorenti a grana fine
5,40	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
5,60	Terreni incoerenti a grana grossa e fine
5,80	Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
6,00	Terreni coesivi ed incorenti a grana fine
6,20	Terreni coesivi ed incorenti a grana fine
6,40	Argille sensitive
6,60	Argille sensitive
6,80	Argille sensitive
7,00	Argille sensitive
7,20	Argille sensitive
7,40	Argille sensitive
7,60	Argille sensitive
7,80	Argille sensitive

Argille sensitive
Argille sensitive
Argille sensitive Terreni coesivi ed incorenti a grana fine
Argille sensitive
Argille sensitive Argille sensitive
Argille sensitive Argille sensitive
Argille sensitive Argille sensitive
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni coesivi ed incorenti a grana fine
Terreni incoerenti a grana grossa e fine
Sabbie metastabili
Argille sensitive
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni coesivi ed incorenti a grana fine
Terreni coesivi ed incorenti a grana fine
Argille sensitive
Terreni coesivi ed incorenti a grana fine
Argille sensitive
Argille sensitive
Terreni incoerenti a grana grossa e fine
Terreni incoerenti a grana grossa e fine
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni incoerenti a grana grossa e fine
Terreni coesivi ed incorenti a grana fine
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Argille sensitive Argille sensitive
Terreni coesivi ed incorenti a grana fine
Argille sensitive
Argille sensitive Argille sensitive
Argille sensitive Argille sensitive
Argille sensitive
Terreni coesivi ed incorenti a grana fine
Terreni coesivi ed incorenti a grana fine Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane)
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Argille sensitive Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Argille sensitive Argille sensitive Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Argille sensitive Argille sensitive Argille sensitive Argille sensitive Argille sensitive
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni coesivi ed incorenti a grana fine Terreni coesivi ed incorenti a grana fine
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni coesivi ed incorenti a grana fine Terreni coesivi ed incorenti a grana fine
Terreni coesivi ed incorenti a grana fine Argille sensitive Terreni coesivi ed incorenti a grana fine Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni incoerenti a grana grossa e fine Argille sensitive Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Terreni incoerenti a grana grossa (Ghiaie-Sabbie grossolane) Argille sensitive Argille sensitive Argille sensitive Argille sensitive Terreni coesivi ed incorenti a grana fine Terreni coesivi ed incorenti a grana fine

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	Prof.	qc	fs		Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi	Begeman	De Beer	Baligh ed
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione		1978 -	Robertso		n		altri
	(m)				Sperimen	A. 1981	Lunne,	n and				(1980)
					tale		Robertso	Powell				Nk = (20)
							n and	1977				
							Powell					
							1977					
Strato 1	1,60	14,88	0,78	0,85	1,04	0,98	0,87	0,78	0,74	1,05	0,74	0,74
Strato 2	3,00	69,43	0,94	3,95	3,08	4,60	4,06	3,63	3,47	4,93	3,47	3,45
Strato 3	5,20	22,82	1,25	1,26	1,43	1,47	1,30	1,16	1,14	1,58	1,14	1,10
Strato 4	5,80	52,0	1,31	2,92	2,57	3,40	3,00	2,68	2,60	3,64	2,60	2,55
Strato 5	9,20	14,0	1,1	0,72	0,89	0,84	0,74	0,66	0,70	0,90	0,70	0,63
Strato 6	9,80	28,33	2,36	1,52	1,63	1,77	1,56	1,40	1,42	1,89	1,42	1,33
Strato 7	13,40	29,06	1,1	1,54	1,64	1,79	1,58	1,41	1,45	1,92	1,45	1,34
Strato 8	15,00	68,0	1,89	3,75	2,94	4,35	3,84	3,43	3,40	4,68	3,40	3,27
Strato 9	17,80	21,71	1,22	1,08	1,21	1,23	1,09	0,97	1,09	1,35	1,09	0,95
Strato 10	18,40	118,33	4,27	6,61	3,86	7,65	6,75	6,04	5,92	8,24	5,92	5,77
Strato 11	20,00	24,25	1,25	1,21	1,31	1,37	1,20	1,08	1,21	1,51	1,21	1,06

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertmann	Harman	Lancellotta	Jamiolkowski
	(m)	(Kg/cm²)	(Kg/cm ²)	Schmertmann			1983	1985
				1976				
Strato 1	1,60	14,88	0,78	42,06	58,42	57,86	42,69	73,83
Strato 2	3,00	69,43	0,94	68,92	82,77	82,15	69,78	83,86
Strato 3	5,20	22,82	1,25	27,78	24,02	27,81	28,29	32,76
Strato 4	5,80	52,0	1,31	46,7	45,66	48,51	47,36	47,31
Strato 5	9,20	14,0	1,1	< 5	< 5	5	5,25	5
Strato 6	9,80	28,33	2,36	21,6	8,62	14,39	22,06	14,11
Strato 7	13,40	29,06	1,1	19,37	< 5	10,26	19,81	8,87
Strato 8	15,00	68,0	1,89	41,67	31,54	36,32	42,3	27,11
Strato 9	17,80	21,71	1,22	< 5	< 5	5	8,36	5
Strato 10	18,40	118,33	4,27	55,37	47,94	51,88	56,11	35,82
Strato 11	20,00	24,25	1,25	< 5	< 5	5	10,13	5

Angolo di resistenza al taglio (°)

Angolo di resistenza ai tagno ()											
	Prof.	qc	fs	Durgunou	Caquot	Koppejan	De Beer	Schmertm	Robertson	Herminier	Meyerhof
	Strato	(Kg/cm ²)	(Kg/cm ²)	glu-				ann	&		1951
	(m)			Mitchell					Campanell		
				1973					a 1983		
Strato 1	1,60	14,88	0,78	36,96	33,78	30,98	28,91	36,18	41,89	29,02	23,68
Strato 2	3,00	69,43	0,94	39	35,51	32,81	30,57	39,59	43,63	32,31	45
Strato 3	5,20	22,82	1,25	30,64	26,67	23,52	22,09	31,36	33,71	23,18	27,25
Strato 4	5,80	52,0	1,31	33,17	29,19	26,16	24,5	34,39	36,82	24,6	40,35
Strato 5	9,20	14,0	1,1	25,46	21,12	17,69	16,76	28,7	25,07	21,75	23,29
Strato 6	9,80	28,33	2,36	27,78	23,44	20,13	18,99	29,21	29,36	22,19	29,72
Strato 7	13,40	29,06	1,1	26,96	22,53	19,18	18,12	28,7	27,76	22,01	30,05
Strato 8	15,00	68,0	1,89	30,46	26,1	22,92	21,55	32,42	32,97	23,01	45
Strato 9	17,80	21,71	1,22	24,59	20,02	16,53	15,71	28,7	22,89	21,62	26,75
Strato 10	18,40	118,33	4,27	32,47	28,13	25,06	23,5	34,71	35,55	23,98	45
Strato 11	20,00	24,25	1,25	24,69	20,08	16,6	15,77	28,7	23,02	21,63	27,89

Modulo di Young (Kg/cm²)

	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988
	(m)	(Kg/cm ²)	(Kg/cm ²)		Campanella (1983)	Ey(50)
Strato 1	1,60	14,88	0,78	37,20	29,76	133,77
Strato 2	3,00	69,43	0,94	173,58	138,86	421,27
Strato 3	5,20	22,82	1,25	57,05	45,64	299,34
Strato 4	5,80	52,0	1,31	130,00	104,00	547,08
Strato 5	9,20	14,0	1,1	35,00	28,00	215,60
Strato 6	9,80	28,33	2,36	70,82	56,66	423,98
Strato 7	13,40	29,06	1,1	72,65	58,12	447,52
Strato 8	15,00	68,0	1,89	170,00	136,00	830,63
Strato 9	17,80	21,71	1,22	54,27	43,42	334,33
Strato 10	18,40	118,33	4,27	295,83	236,66	1212,55
Strato 11	20,00	24,25	1,25	60,63	48,50	373,45

Modulo Edometrico (Kg/cm²)

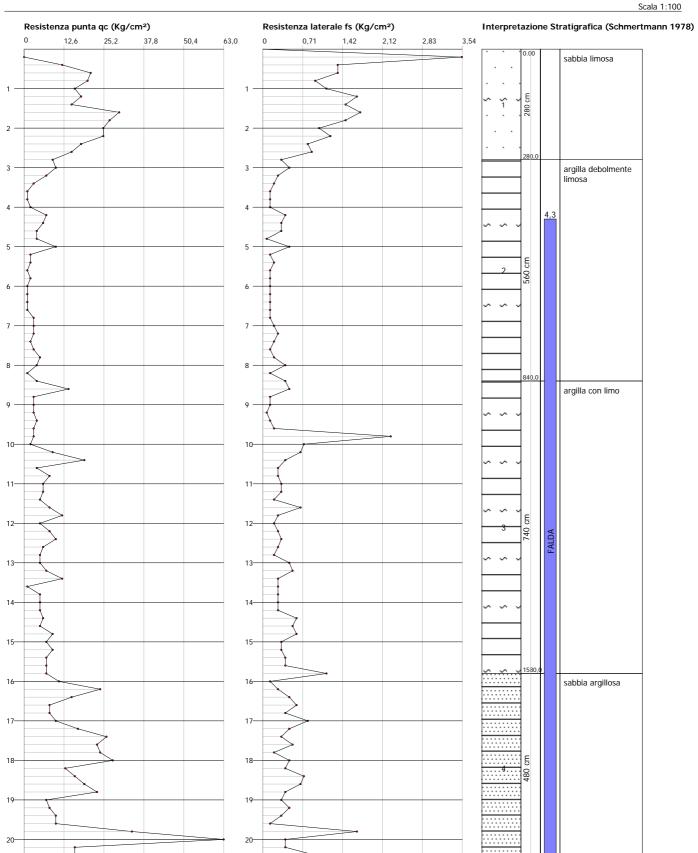
Violato Edonic	Prof. Strato	qc	fs	Robertson &	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm²)	(Kg/cm ²)	Campanella	Christoffersen	Mayne 1990	Gardner 1975	Sanglerat
				da	1983 -			
				Schmertmann	Robertson and			
					Powell 1997			
Strato 1	1,60	14,88	0,78	47,98	58,37	113,53	29,76	74,40
Strato 2	3,00	69,43	0,94	72,03	272,35	561,33	118,03	104,15
Strato 3	5,20	22,82	1,25	28,56	89,52	173,74	45,64	114,10
Strato 4	5,80	52,0	1,31	49,84	203,98	412,14	88,40	78,00
Strato 5	9,20	14,0	1,1	21,09	54,92	95,46	28,00	70,00
Strato 6	9,80	28,33	2,36	28,85	111,13	210,53	56,66	141,65
Strato 7	13,40	29,06	1,1	30,91	113,99	213,10	58,12	145,30
Strato 8	15,00	68,0	1,89	56,69	266,74	529,25	115,60	102,00
Strato 9	17,80	21,71	1,22	36,97	85,16	143,09	43,42	108,55
Strato 10	18,40	118,33	4,27	75,77	252,08	937,00	177,49	177,49
Strato 11	20,00	24,25	1,25	40,37	95,12	158,76	48,50	121,25

Peso unità di volume

i eso unita ui voiune					
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm²)	(Kg/cm ²)		(t/m^3)
Strato 1	1,60	14,88	0,78	Meyerhof	1,80
Strato 2	3,00	69,43	0,94	Meyerhof	1,90
Strato 3	5,20	22,82	1,25	Meyerhof	1,80
Strato 4	5,80	52,0	1,31	Meyerhof	1,80
Strato 5	9,20	14,0	1,1	Meyerhof	1,80
Strato 6	9,80	28,33	2,36	Meyerhof	1,80
Strato 7	13,40	29,06	1,1	Meyerhof	1,80
Strato 8	15,00	68,0	1,89	Meyerhof	1,80
Strato 9	17,80	21,71	1,22	Meyerhof	1,80
Strato 10	18,40	118,33	4,27	Meyerhof	1,80
Strato 11	20,00	24,25	1,25	Meyerhof	1,80

Peso unità di volume saturo

i eso unita ui voiune s	aturo				
	Prof. Strato	qc	fs	Correlazione	Peso unità di volume
	(m)	(Kg/cm ²)	(Kg/cm ²)		saturo
					(t/m^3)
Strato 1	1,60	14,88	0,78	Meyerhof	2,10
Strato 2	3,00	69,43	0,94	Meyerhof	2,20
Strato 3	5,20	22,82	1,25	Meyerhof	2,10
Strato 4	5,80	52,0	1,31	Meyerhof	2,10
Strato 5	9,20	14,0	1,1	Meyerhof	2,10
Strato 6	9,80	28,33	2,36	Meyerhof	2,10
Strato 7	13,40	29,06	1,1	Meyerhof	2,10
Strato 8	15,00	68,0	1,89	Meyerhof	2,10
Strato 9	17,80	21,71	1,22	Meyerhof	2,10
Strato 10	18,40	118,33	4,27	Meyerhof	2,10
Strato 11	20,00	24,25	1,25	Meyerhof	2,10

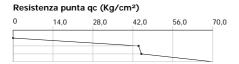

Profondità

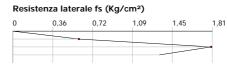
Probe CPT - Cone Penetration CPT Nr.2 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Località :

Data :16/04/2007




Probe CPT - Cone Penetration CPT Nr.3 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Località :

Data :17/04/2007

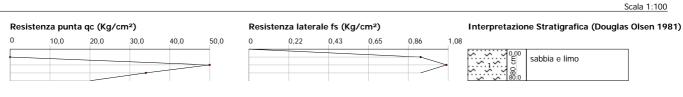
Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Scala 1:100

Probe CPT - Cone Penetration CPT Nr.3_1 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Località : Dipartimento di Cultura del Progetto Sessa Aurunca (CE) Data :17/04/2007

Resistenza punta qc (Kg/cm²)					Resis	Resistenza laterale fs (Kg/cm²)				Interpretazione Stratigrafica (Douglas Olsen 1981)		
0	7,6	15,2	22,8	30,4	38,0	0	0,30	0,59	0,89	1,18	1,48	
					<u> </u>						>	0.00 sabbia e limo


Scala 1:100

Probe CPT - Cone Penetration CPT Nr.3_2 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

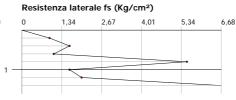
Committente : Cantiere : Località :

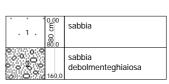
Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Data :17/04/2007

Probe CPT - Cone Penetration CPT Nr.3_3 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

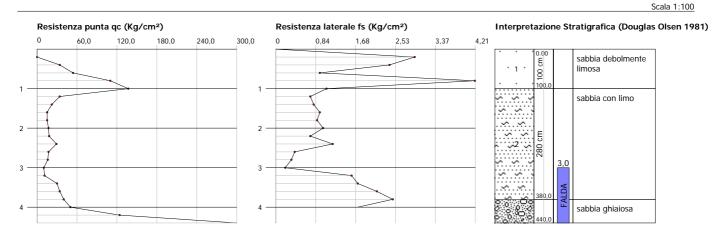

Committente : Cantiere : Località :


Dipartimento di Cultura del Progetto Sessa Aurunca (CE)


Scala 1:100

Interpretazione Stratigrafica (Douglas Olsen 1981)

Data :27/04/2007

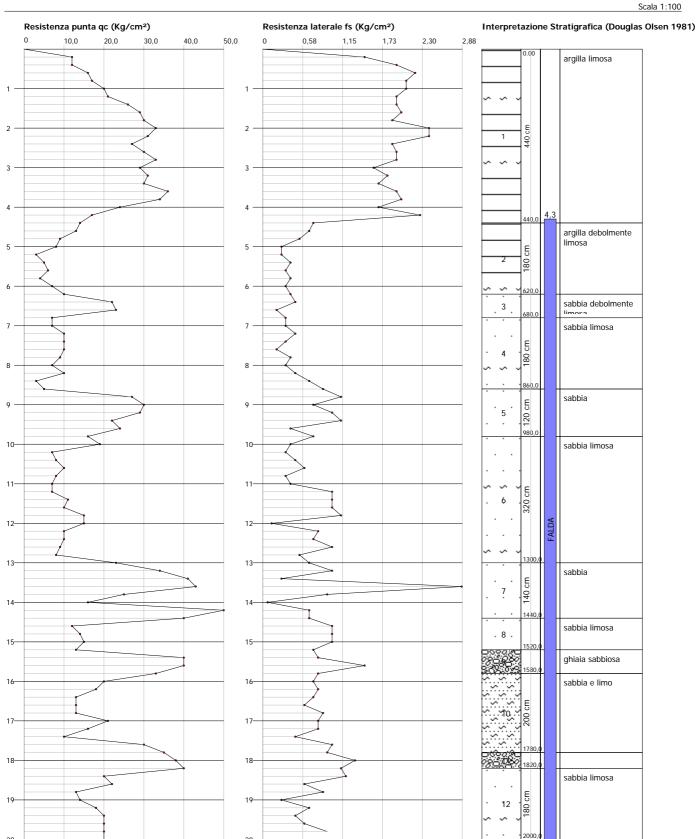

Probe CPT - Cone Penetration CPT Nr.3_4 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere :

Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Località :

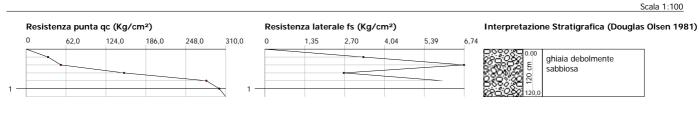
Data :27/04/2007


Profondità

Probe CPT - Cone Penetration CPT Nr.4 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Dipartimento di Cultura del Progetto Sessa Aurunca (CE) Committente :

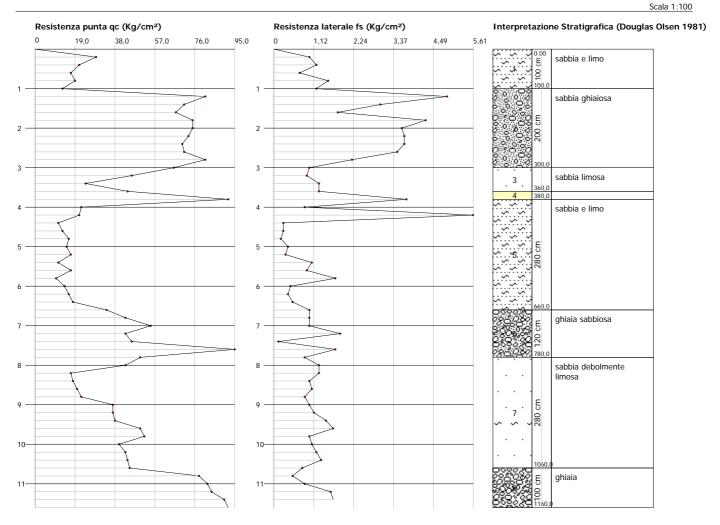
Località :


Data :27/04/2007

Probe CPT - Cone Penetration CPT Nr.5 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Località : Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Data:30/04/2007

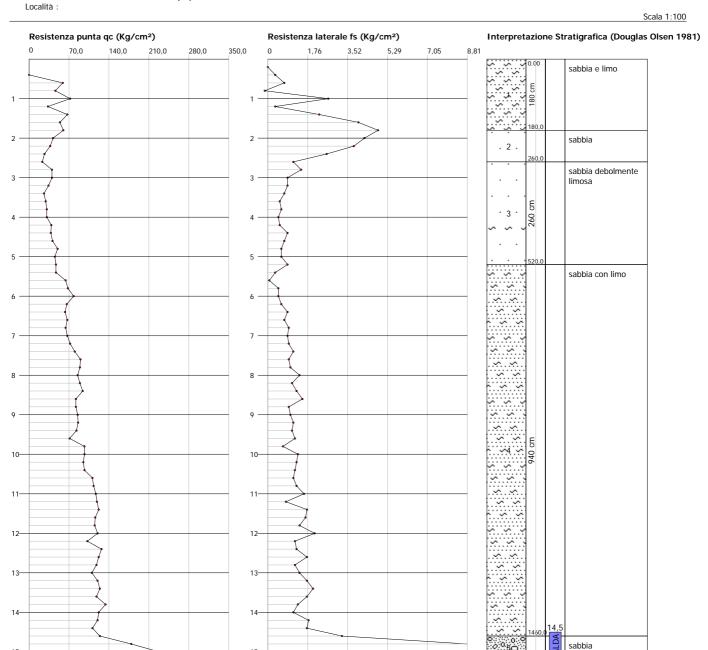


Probe CPT - Cone Penetration CPT Nr.6 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Località :

Data :02/05/2007

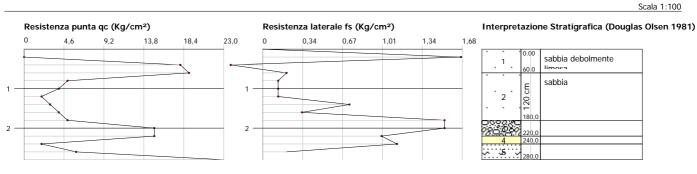


Committente :

Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Cantiere :

Data:02/05/2007

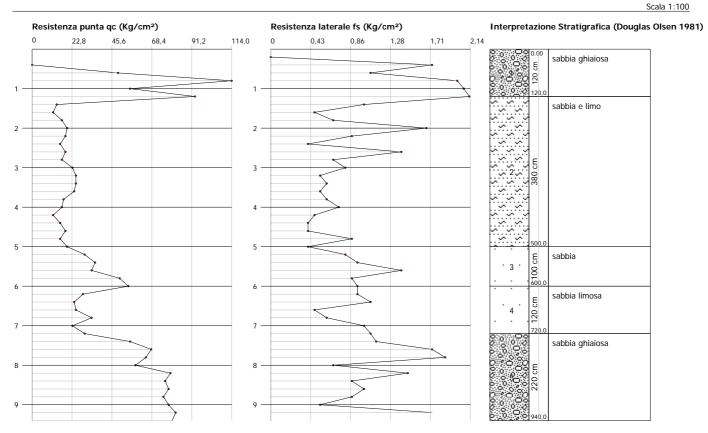

0019287 del 31-05-2023 in arrivo n. Comune di Sessa Aurunca Prot.

Profondità

Probe CPT - Cone Penetration CPT Nr.1 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Località : Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Data :16/04/2007

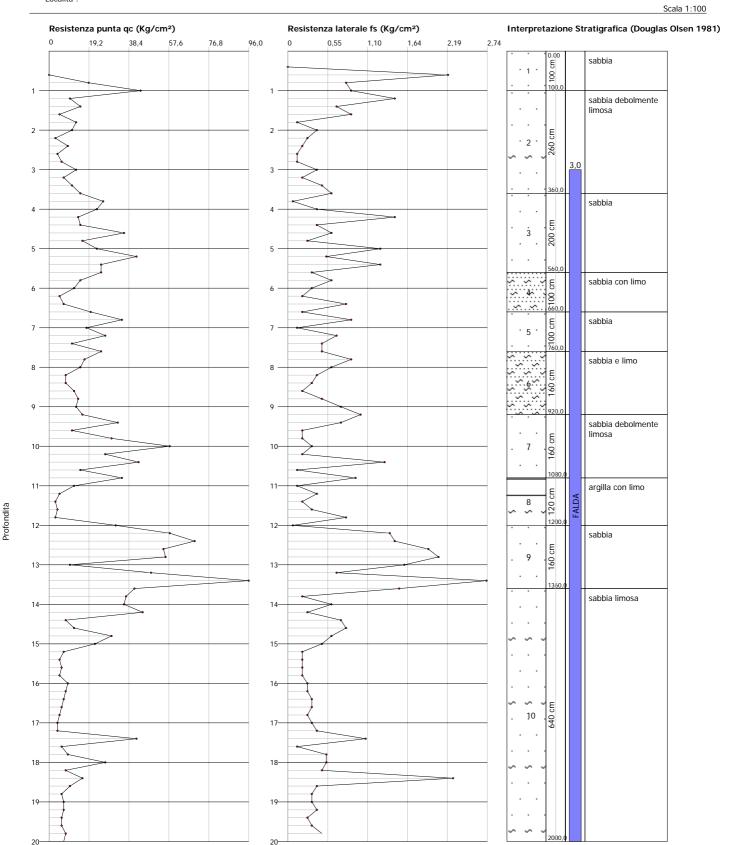


Probe CPT - Cone Penetration CPT Nr.8 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Località :

Data :02/05/2007



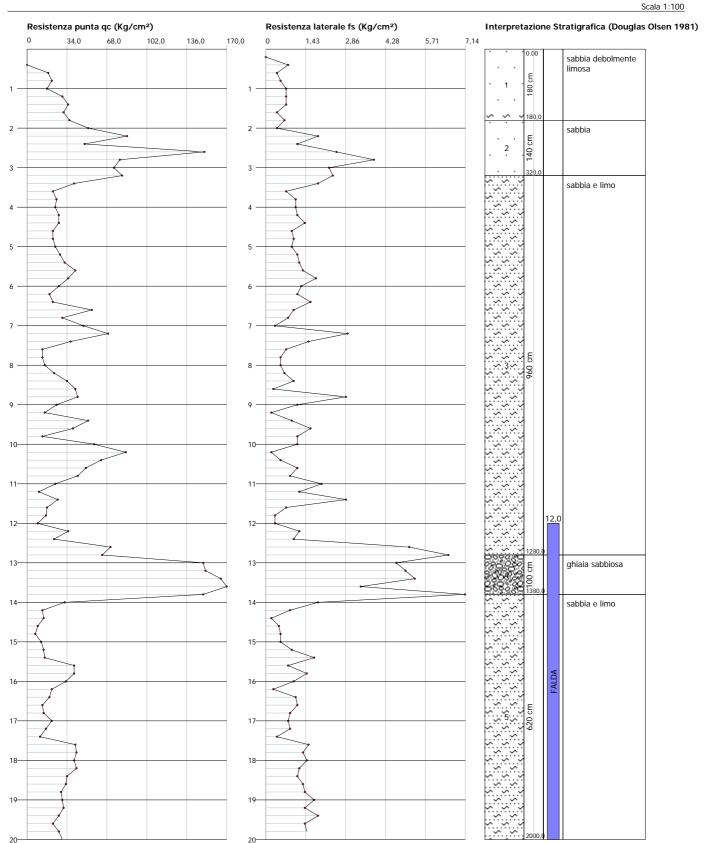
Committente :

Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Località :

Data :07/05/2007

0019287 del 31-05-2023 in arrivo n. Comune di Sessa Aurunca Prot.

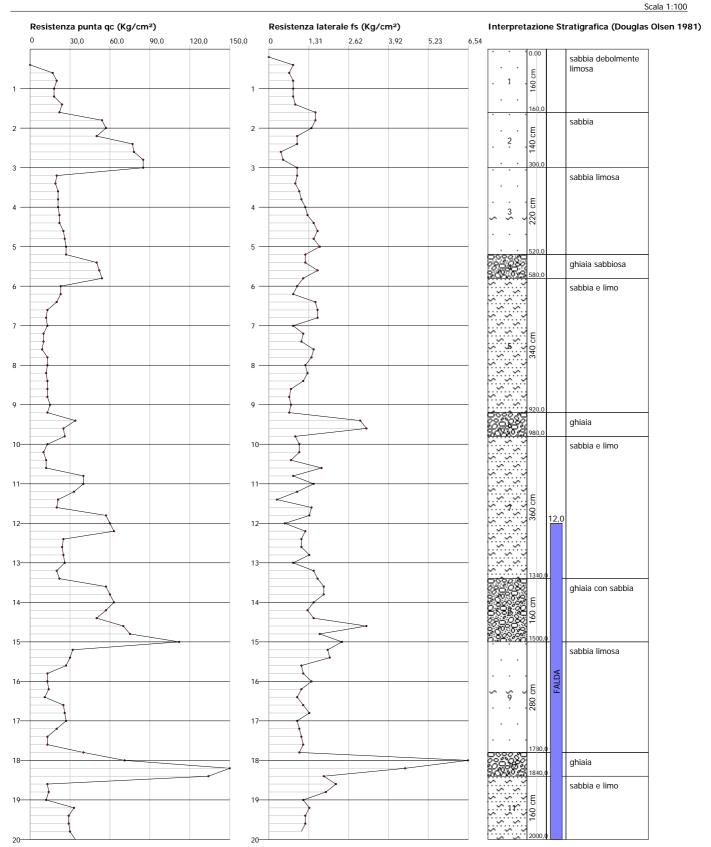

Profondità

Probe CPT - Cone Penetration CPT Nr.10 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Dipartimento di Cultura del Progetto Sessa Aurunca (CE)

Località :

Data :07/05/2007


Profondità

Probe CPT - Cone Penetration CPT Nr.11 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Dipartimento di Cultura del Progetto Sessa Aurunca (CE) Committente :

Località :

Data:07/05/2007

Sondaggio: S4

Sondaggio: S7

JOB:

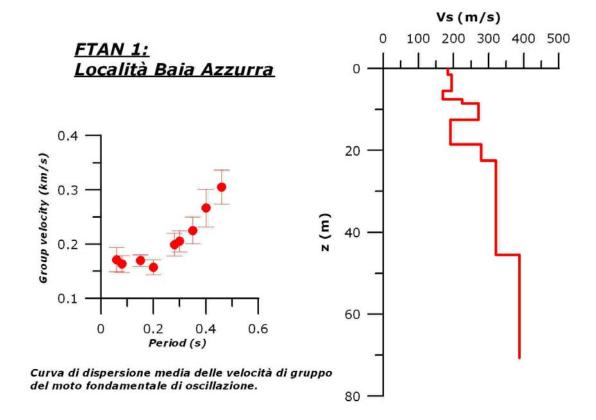
⊠ Via A. Costa - S. Maria Capua Vetere (Ce) - 2 0823.589086 fax 0823.699800 e-mail sogeo@tin.it

Sondaggio: S10

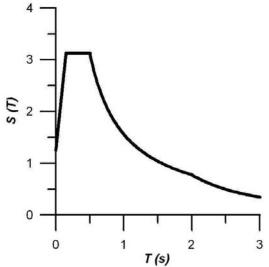
JOB:

JOB:

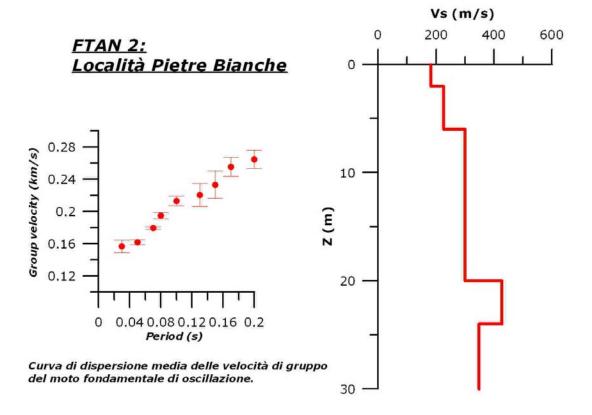
PENETROMETRIE



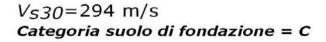
Soluzioni Geotecniche s.r.l.

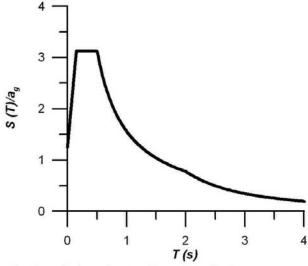

JOB:
Allegato
fotografico

Campagna indagini geofisiche - **anno 2007**Indagini in sismica attiva – FTAN
Indagini in foro – Down Hole
Indagine in sismica passiva di Cross Correlazione

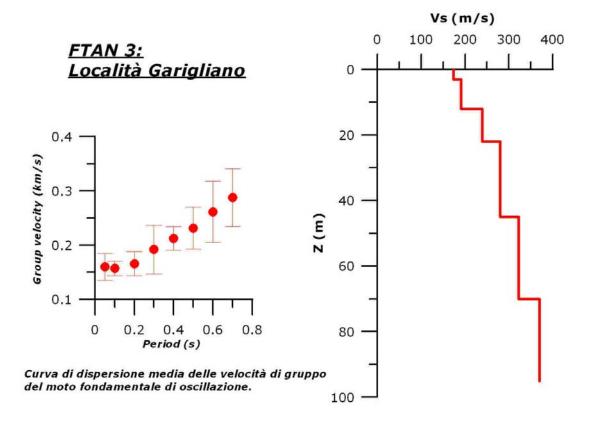


Profilo di velocità delle onde di taglio calcolato.

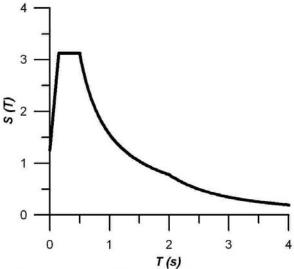




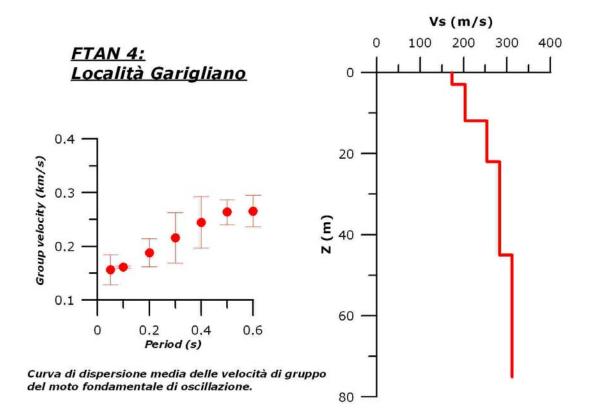
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



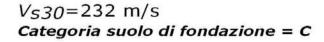
Profilo di velocità delle onde di taglio calcolato.

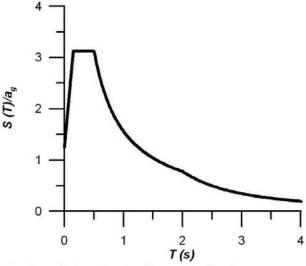


Spettro di risposta elastico normalizato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

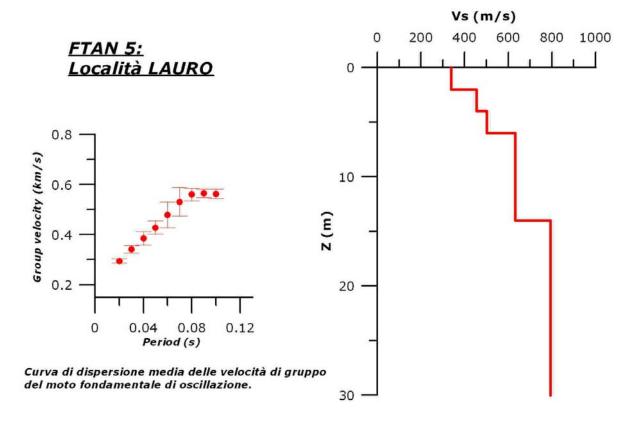


Profilo di velocità delle onde di taglio calcolato.

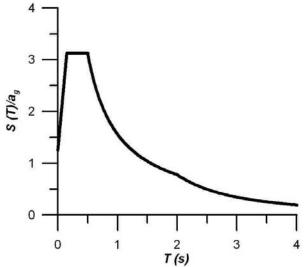




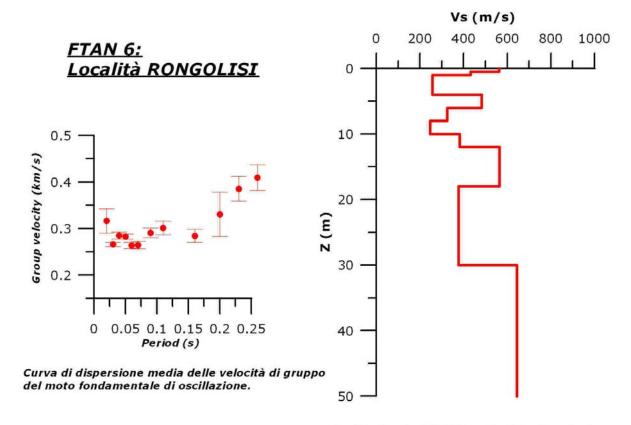
Spettro di risposta elastico normalizato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



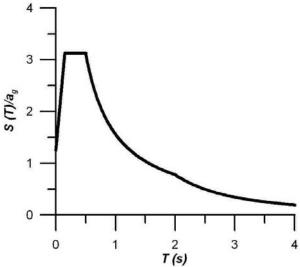
Profilo di velocità delle onde di taglio calcolato.



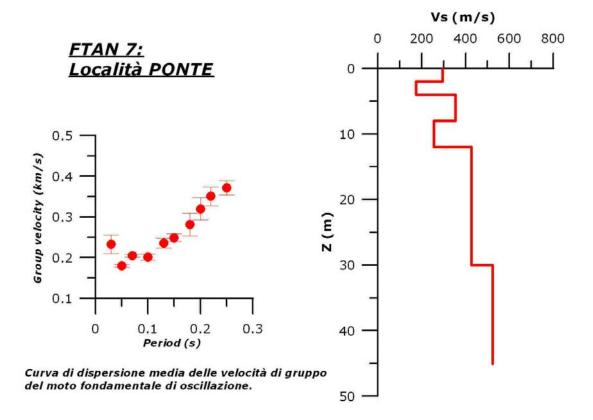
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



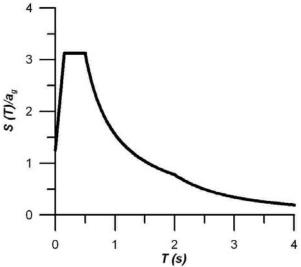
Profilo di velocità delle onde di taglio calcolato.



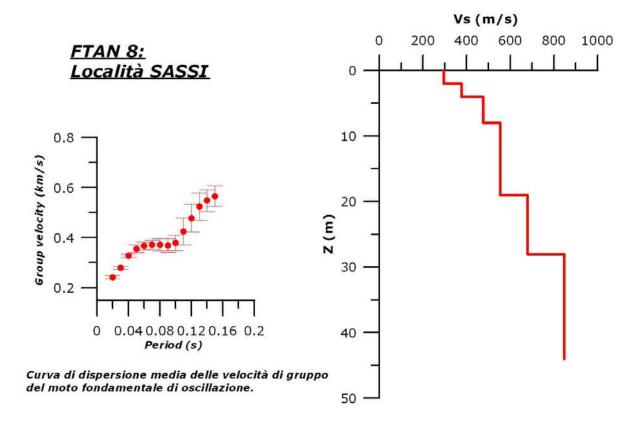
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



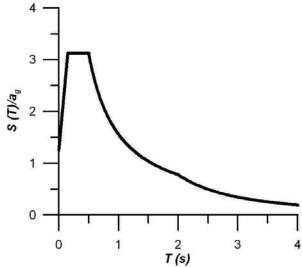
Profilo di velocità delle onde di taglio calcolato.



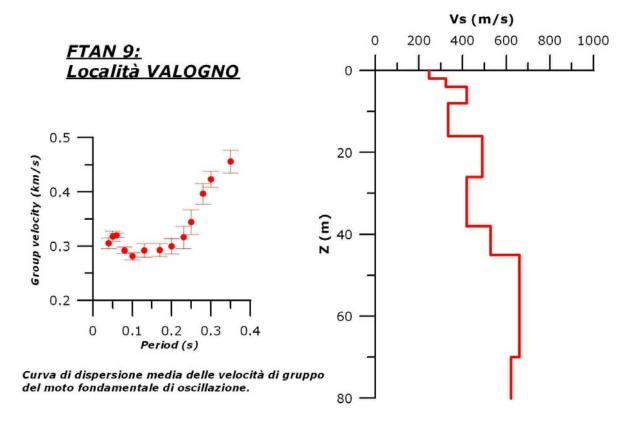
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



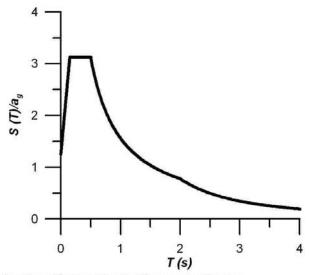
Profilo di velocità delle onde di taglio calcolato.



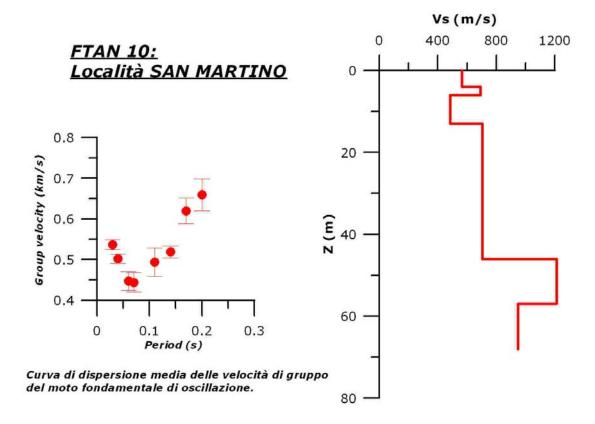
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



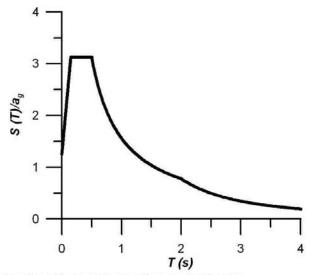
Profilo di velocità delle onde di taglio calcolato.



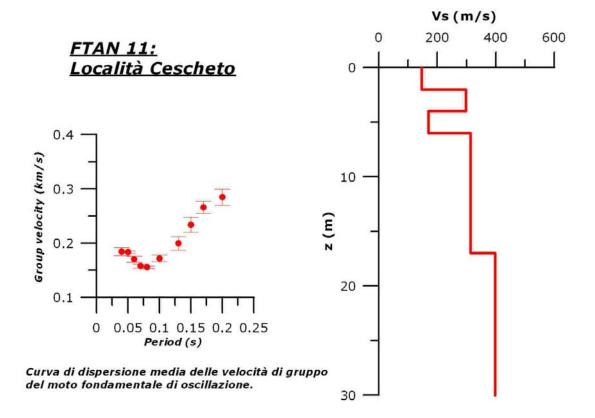
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



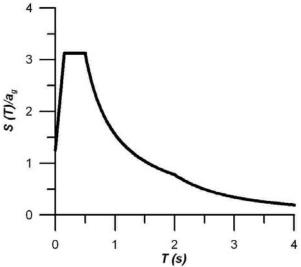
Profilo di velocità delle onde di taglio calcolato.



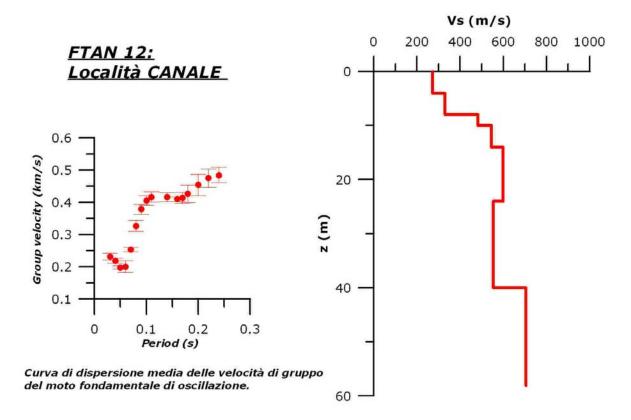
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



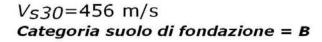
Profilo di velocità delle onde di taglio calcolato.

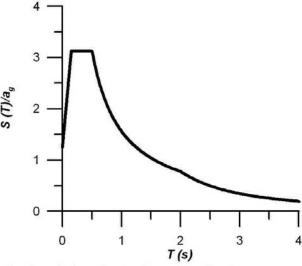


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



Profilo di velocità delle onde di taglio calcolato.

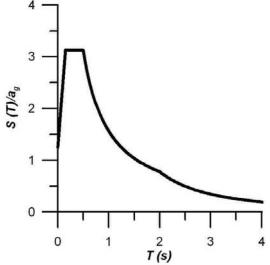




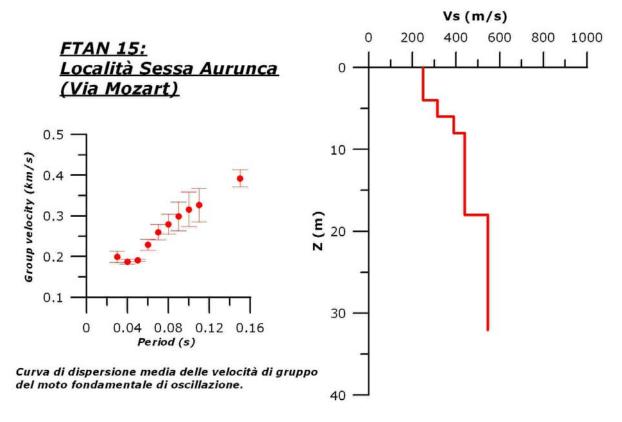
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



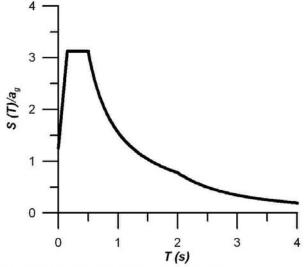
Profilo di velocità delle onde di taglio calcolato.



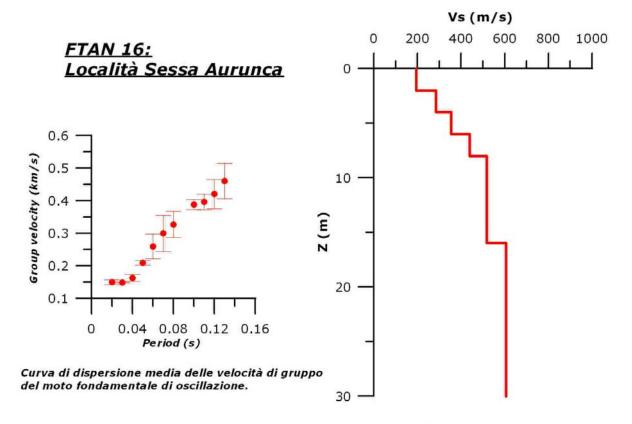
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



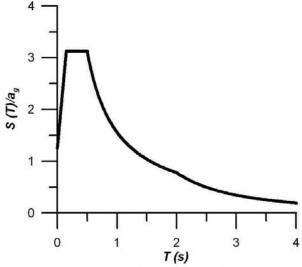
Profilo di velocità delle onde di taglio calcolato.



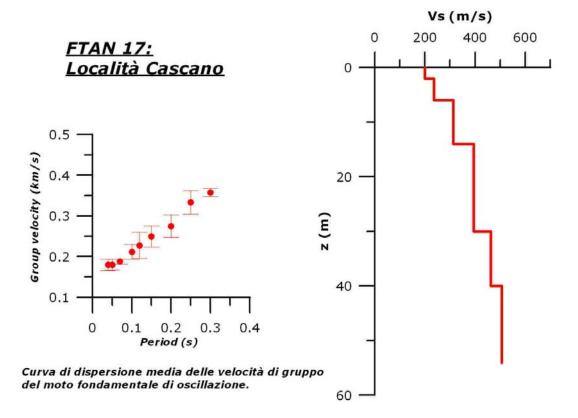
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



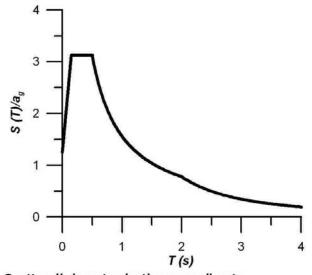
Profilo di velocità delle onde di taglio calcolato.



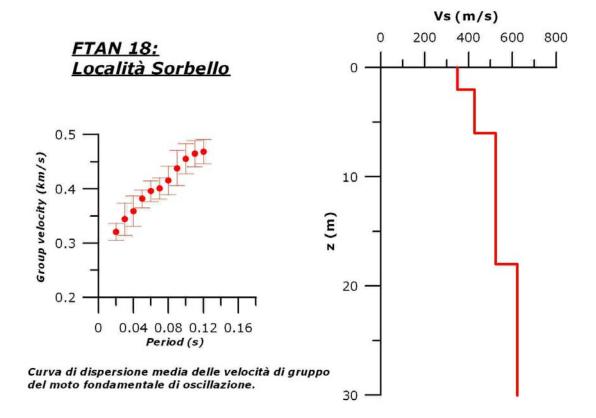
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



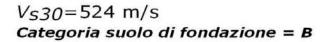
Profilo di velocità delle onde di taglio calcolato.

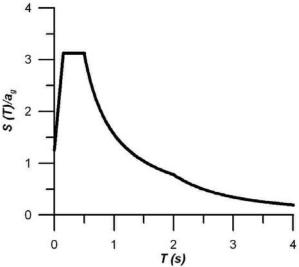


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

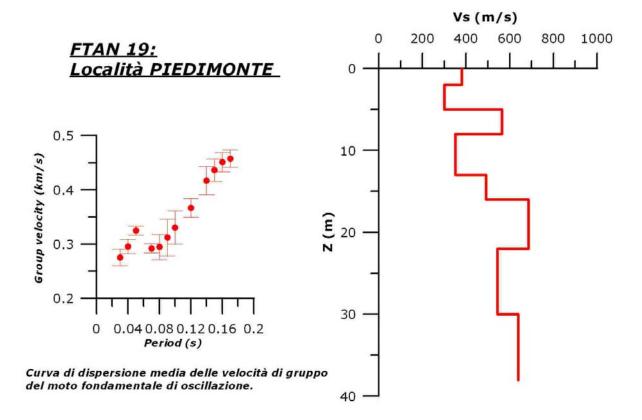


Profilo di velocità delle onde di taglio calcolato.

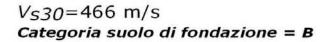


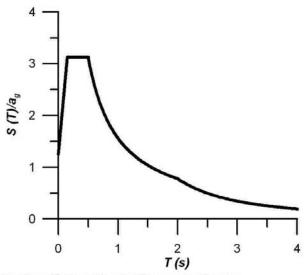


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

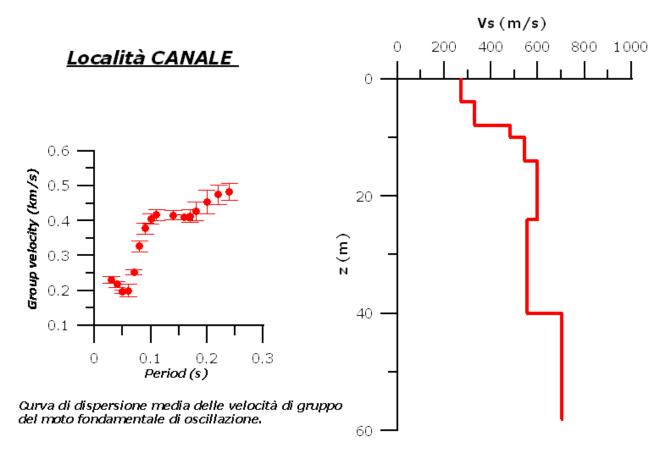


Profilo di velocità delle onde di taglio calcolato.

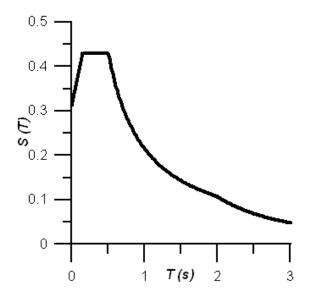




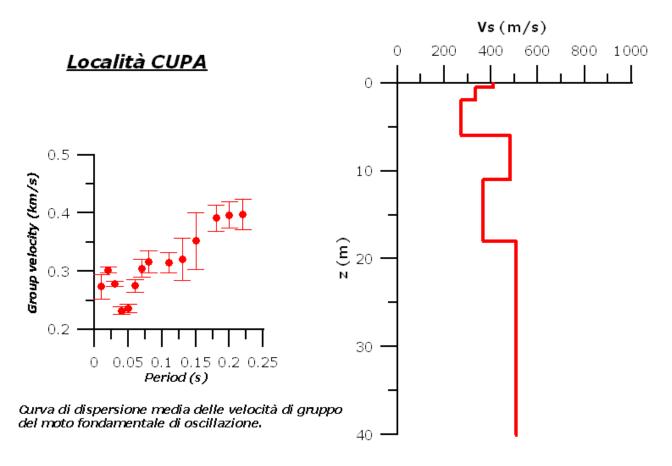
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



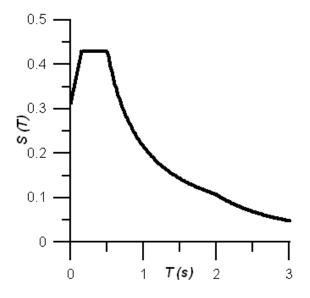
Profilo di velocità delle onde di taglio calcolato.



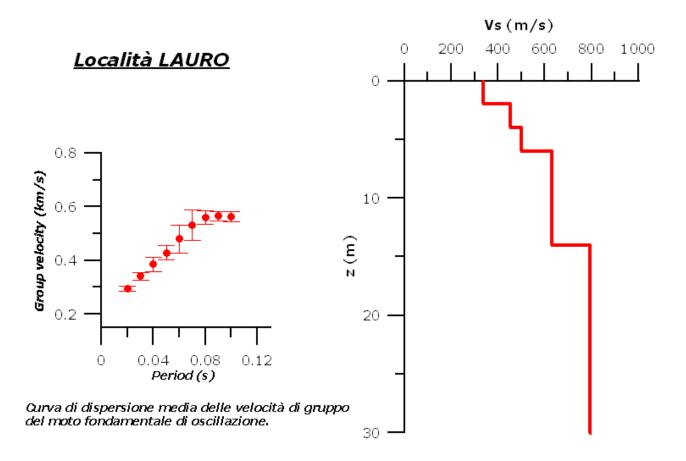
Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).



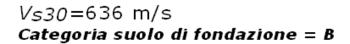
Profilo di velocità delle onde di taglio calcolato.

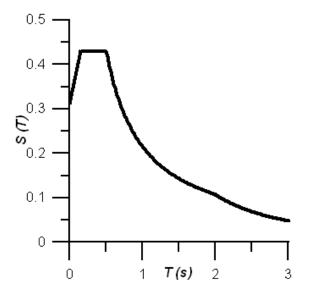


Spettro di risposta elastico della componente orizzontale del moto (opcm n. 3274/03).

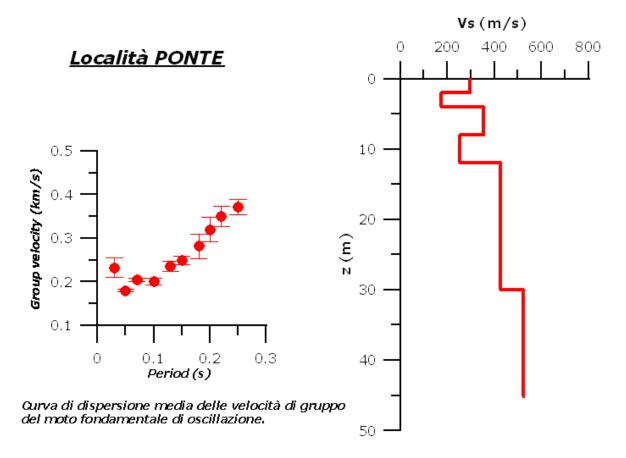


Profilo di velocità delle onde di taglio calcolato.

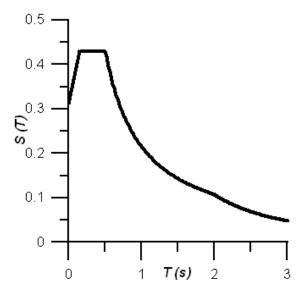




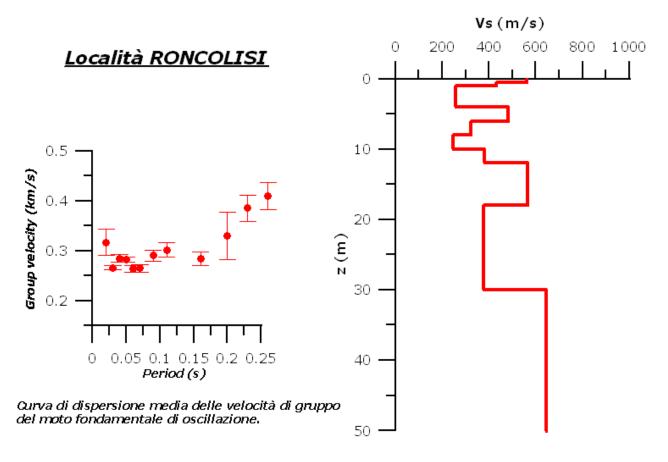
Spettro di risposta elastico della componente orizzontale del moto (opcm n. 3274/03).



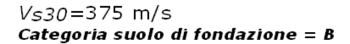
Profilo di velocità delle onde di taglio calcolato.

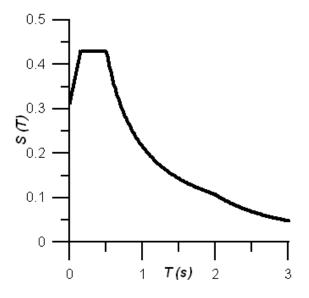


Spettro di risposta elastico della componente orizzontale del moto (opcm n. 3274/03).

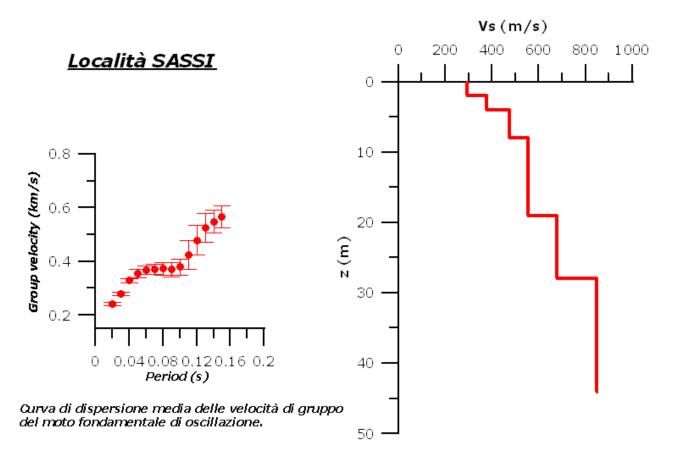


Profilo di velocità delle onde di taglio calcolato.

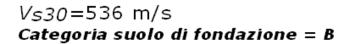


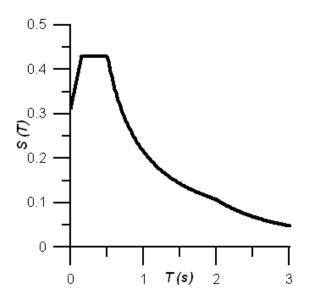


Spettro di risposta elastico della componente orizzontale del moto (opcm n. 3274/03).

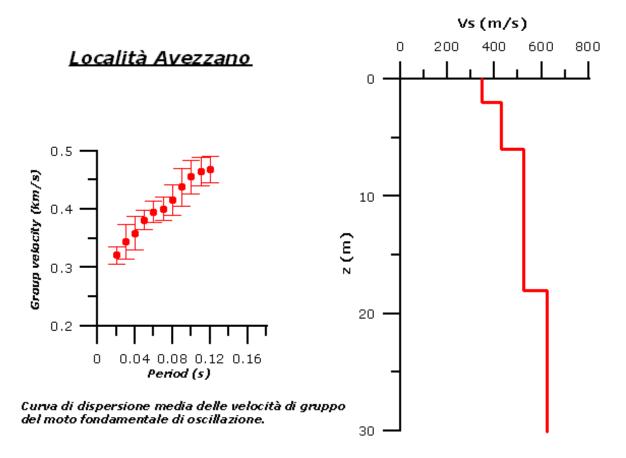


Profilo di velocità delle onde di taglio calcolato.

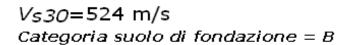


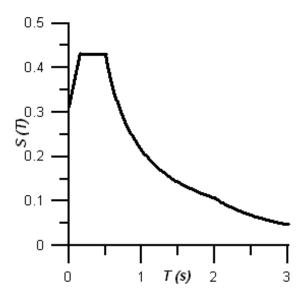


Spettro di risposta elastico della componente orizzontale del moto (opcm n. 3274/03).

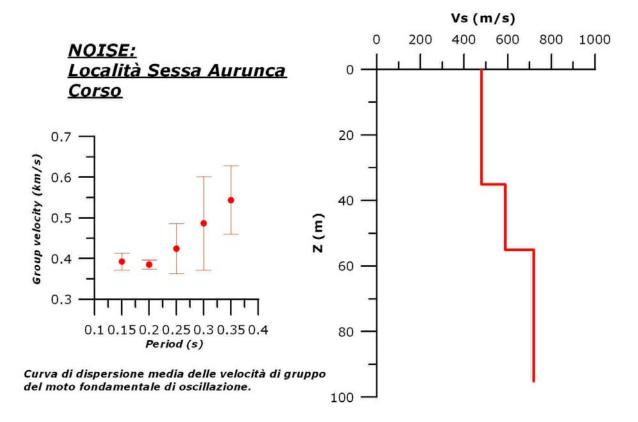


Profilo di velocità delle onde di taglio calcolato.



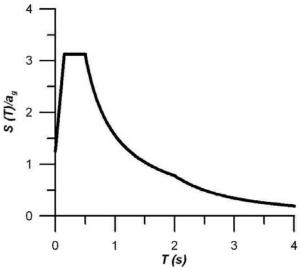


Spettro di risposta elastico della componente orizzontale del moto (opcm n. 3274/03).

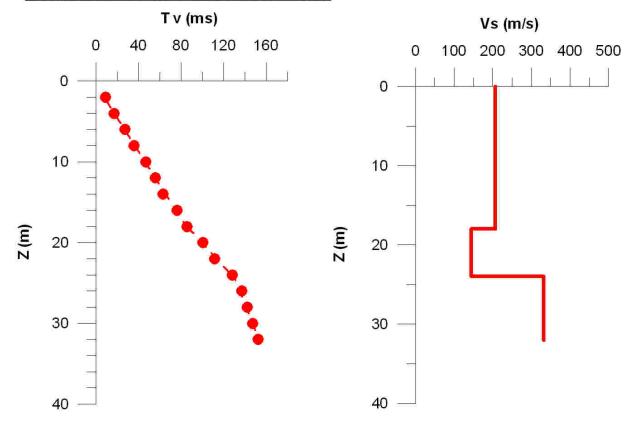


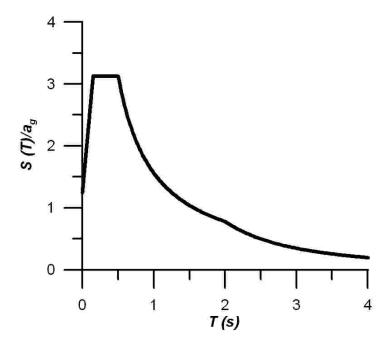
Profilo di velocità delle onde di taglio calcolato.





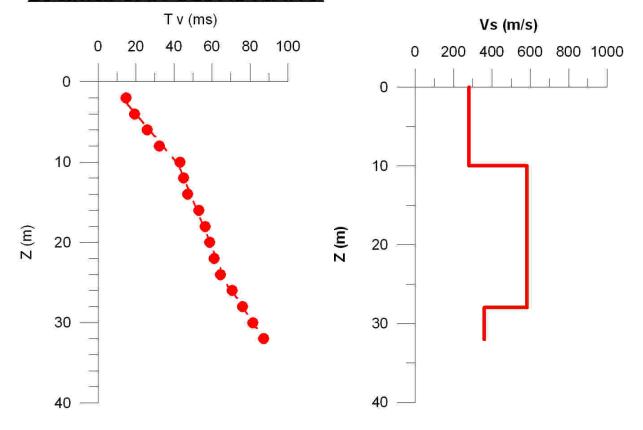
Spettro di risposta elastico della componente orizzontale del moto (opcm n. 3274/03).


Profilo di velocità delle onde di taglio calcolato.

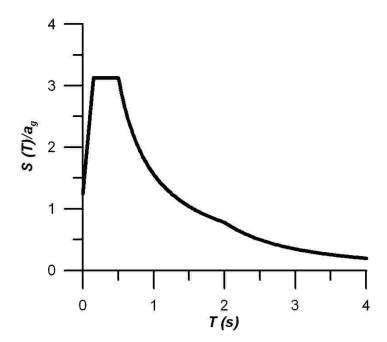


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

<u>DH-S3:</u> Località Consorzio Bonifica

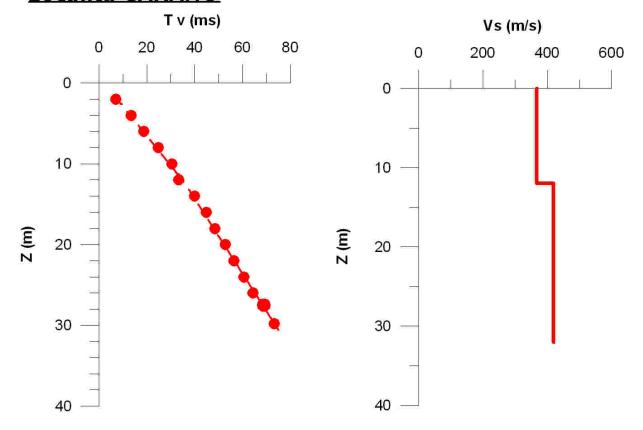


 V_S30 =204 m/s Categoria suolo di fondazione = C

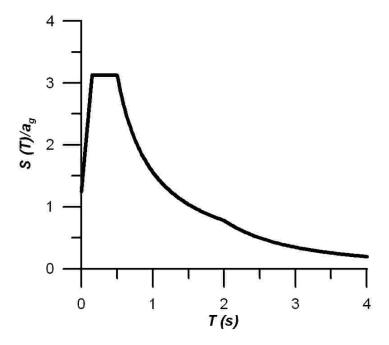


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

<u>DH8-S4:</u> Località SAN SEBASTIANO

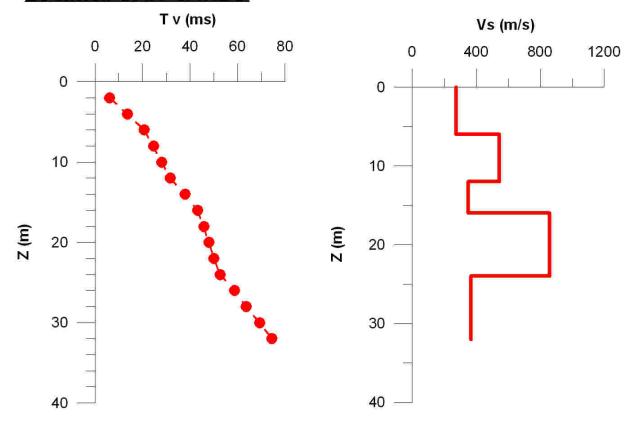


 V_S30 =404 m/s Categoria suolo di fondazione = B

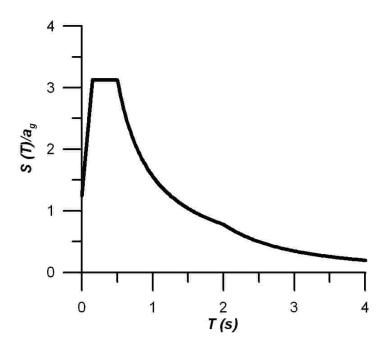


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

<u>DH-S5:</u> Località CARANO

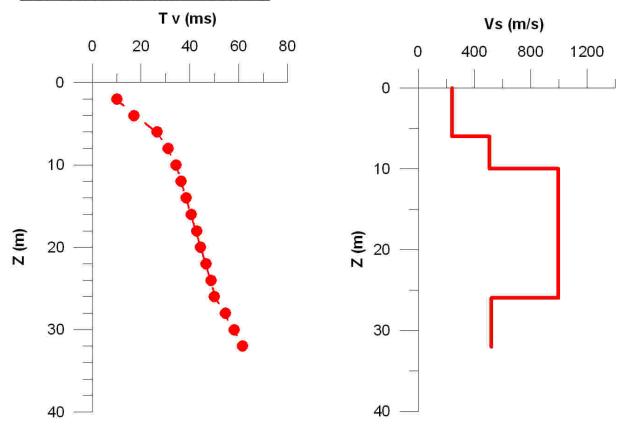


 V_S30 =397 m/s Categoria suolo di fondazione = B

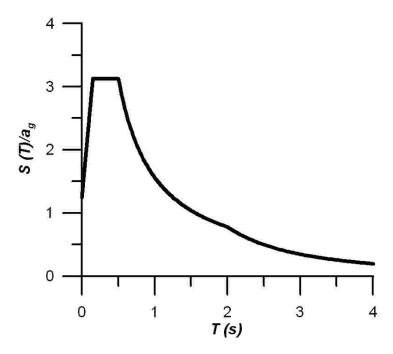


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

<u>DH-S6:</u> Località SAN CARLO

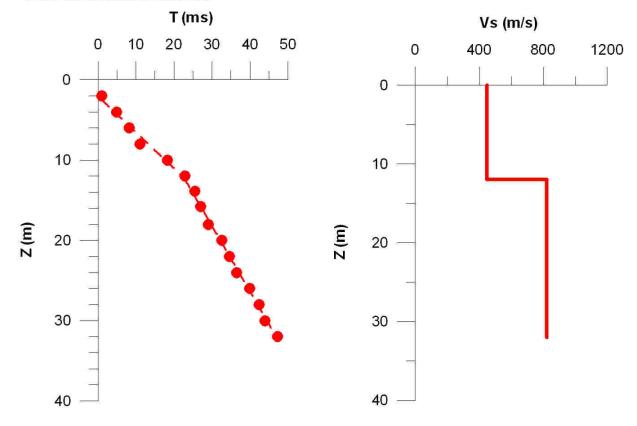


 V_S30 =430 m/s Categoria suolo di fondazione = **B**

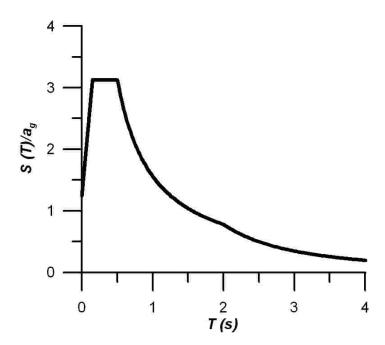


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

<u>DH-S8</u> Località CORIGLIANO

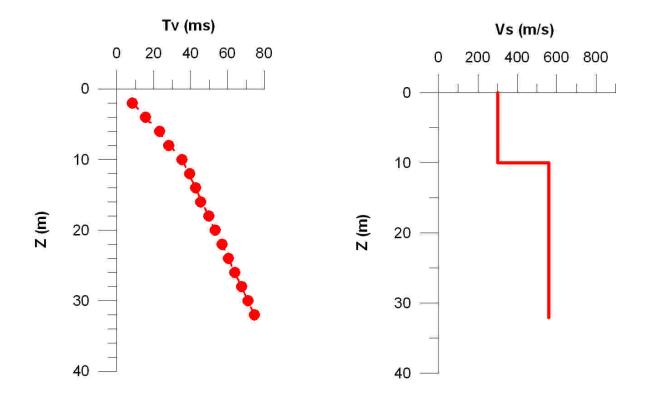


 $V_S30=530 \text{ m/s}$ Categoria suolo di fondazione = B

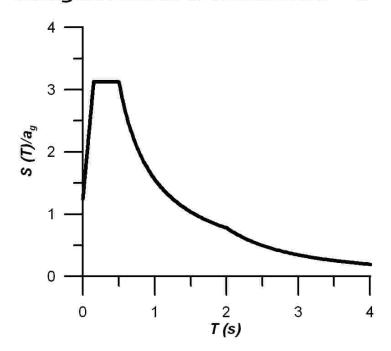


Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

<u>DH-S10:</u> Località FASANI



 V_S30 =617 m/s Categoria suolo di fondazione = B



Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).

DH-S11: Località STAZIONE FERROVIARIA

 V_S30 =435 m/s Categoria suolo di fondazione = B

Spettro di risposta elastico normalizzato della componente orizzontale del moto (O.P.C.M. n. 3274/03).